

Team Members: Gail Kelly, Hannah Winstead, Jose Carrizo, and Kevin Davenport Jr.

PROJECT BACKGROUND

- **STIHL HAS BEEN EXPERIENCING MORE** FLUCTUATION WITH DEMAND
- **FORECASTING HAS SHIFTED FROM ESTIMATES** MONTHLY TO WEEKLY
- THIS HAS LED TO THE NEED FOR FLEXIBLE PRODUCTION LINE

OBJECTIVES

- OPTIMIZE PRODUCTION LINE LAYOUT TO MEET **OUTPUT DEMANDS**
- **ALLOCATE TASKS TO STATIONS AND KEEP WORKER** PRODUCTIVITY ABOVE 88%
- **MINIMIZE CHANGEOVER TIME TO AT MOST HALF A** DAY
- **PROVIDE RECOMMENDATION FOR NEW PRODUCTION LINE**

FLEXIBLE PRODUCTION LINE

IMPACT

- Labor cost reduced 18% per shift or ~\$273,768 over a three-year period
- Unnecessary units not produced
- **Reduction in storage of** approximately 40,000 units

Decision Matrix to determine best flexible production line

		Setup 1	Setup 2	Setup 3	Setup 4
	Weigh				
	t	Single			Equipme
Criteria (1-5)	(1-5)	Worker	U-Line	AGV	t Change
Low Space	2	2	4	4	
Low					
Investment	4	1	3	2	
Low Walking	2	5	2	5	
High Range of					
Effective Rates	3	1	5	4	
Low					
Changeover					
Effort	5	3	4	4	
Balancing					
Flexibility	4	5	4	3	
Final Scores		56	75	70	77

- **Additional Recommendations:**
- Mobilize auto stations to increase flexibility in assembly sequence
- Improve flexibility of setup and removal of poka-yoke cameras
- Open to the idea workers standing and walking between stations

Company Contact: Herbert Taute

APPROACH

Worker Utilization with new rate and no adjustments made

Worker Utilization with new rate and station adjustments to increase efficiency

Program used to find optimal solution

 $S_{max} = maximum \# of stations$ 1, task i assigned to station k $x_{ki} =$ 0, Otherwise (1, station k is used $Z_k = \langle$ 0, Otherwise

Min. $\sum_{k=1} z_k$ (Minimize number of stations) s.t. $\sum_{k=1}^{S_{max}} t_i(x_{ki}) \leq T(z_k)$ (Total task does not exceed takt time)

 $\sum_{k=1}^{S_{max}}(x_{ki}) = 1$ (Each task assigned to one station) $\sum_{k=1}^{S_{max}} (x_{ki} - k + 1) (x_{kp_1} - x_{ki}) \ge 0$ (Forward precedence 1) $\sum_{k=1}^{S_{max}} (x_{ki} - k + 1)(x_{kp_2} - x_{ki}) \ge 0$ (Forward precedence 2) $\sum_{k=1}^{S_{max}} a_i(x_{ki}) \le 1$ (Cannot work between auto station)

RESEARCH

FOUR DIFFERENT APPROACHES TO A FLEXIBLE **PRODUCTION LINE BASED ON DESIRED CRITERIA**

REBALANCING EXERCISE INFORMATION APPLIED TO DETERMINE FLEXIBLE PRODUCTION LINE LAYOUTS