SYSTEMS ENGINEERING RESEARCH CENTER

Company Background

- The Systems Engineering Research Center (SERC) is a not-for-profit, University Affiliated Research Center that is sponsored by the Department of Defense.
- The SERC conducts research with the objective of having a positive impact on the national security of the United States

Client Background

- The SERC put us in contact with U.S. Navy SEAL Delivery Vehicle Team - 2 (SDVT-2), which operates under the United States Special Operations Command (USSOCOM).
- SDVT-2 is stationed at Joint Expeditionary Base in Little Creek, VA and are currently using a Dry Combat Submersible (DCS) to transport and deploy SEALS during missions.

Problem Description

The Dry Combat Submersible (DCS) is still in its prototype stage, so there has been little to no research done on the task demands of this specific work environment. As a result, the Pilots and Co-Pilots are conducting missions on unvalidated shift lengths. The crew also has no way to measure their levels of workload and/or cognitive fatigue during the mission, leaving optimum performance unknown.

Cognitive and Fatigue Field Assessments Ryan Couse, Mac Kortrey, Alex Nwogu, Natalie Weaver Faculty Advisor: Dr. Charlie Klauer Client Contact: Bill Shepherd

DCS Overview

Crew Members

DCS can hold up to 10 crew members, 3 or 4 of whom are trained Pilots/Co-Pilots

Task Demands

Pilots and Co-Pilots need to be responsive and track various data sets and systems

Mission

Future missions can be up to 72 hours with an additional 4 days of life support

Confined Space

The ship is 9 ft wide, 40 ft long, and is separated into 3 compartments

Current Operations

The Pilots and Co-Pilots are currently operating on a 6 hour shift schedule

Rest Conditions The conditions for rest are very poor, as the entire interior of the ship is made of steel

Project Approach

Phase I: Conduct literature review on task demands, shift lengths, and different fatigue measurement methods.

Phase II: Develop a human performance study to assess the sensitivity of different fatigue measurement methods as well as the impact of shift length for a 12-hour mission.

Phase III: Develop an optimum shift schedule guide for SDVT-2 12-hour missions and measurement tools to assess appropriateness of shift durations for longer missions.

Experimental Design

Objectives

- Simulate the DCS environment as effectively as possible
- Utilize a set of previously validated surveys and neuropsychological tests to assess fatigue and cognitive abilities over time

Measurements

- Cognitive Assessments
- Arithmetic table
- NASA-TLX workload assessment
- Simon working memory span task
- Repeatable episodic memory test
- Reaction time task
- Stroop Color and Word Test
- Paced Auditory Serial Addition Test (PASAT)
- Trail Making Test
- Physiological Assessments
- Non-invasive continuous monitoring
- Devices
- Empatica E4
- Actigraph
 - wGTX3
 - CenterPoint Insight
 - GT9x Link
- HR Monitors Polar H10, H9, OH1

Procedure

- Participants recruit 12 total members from the Virginia Tech Naval ROTC in 4 groups of three
- Duration 12 hour period on weekends
- IRB Approved

Tasks

- Pilot Operation of a Digital Combat Simulator
- CoPilot Perform a variety of logging tasks, track noticeable
- trends in the data, monitor Pilots performance
- Rest Remain seated, may read hard copy materials

Microsoft Flight Simulator

Polar OH1

Optical Heart

Rate Sensor

Expected Findings

Shift Schedule Guide

Deliverables

Impact

Physiological Indicators of Fatigue

• Heart Rate Variation: Increased HRV indicates increased cognitive demand and increased cognitive fatigue • Wrist Activity: Little to no wrist movement for 4-5 minutes indicates fatigue

Cognitive Indicators of Fatigue

• Performance on cognitive assessments will decline over time as fatigue increase

• Investigate which cognitive indicators are the most sensitive for this population and work environment

• Identify the point during a 12-hour mission at which cognitive ability has significantly declined, indicating a job rotation is necessary

• Project findings to develop guides for 24-hour, 36-hour, and 48-hour mission lengths

Human performance study experimental design for future team and/or Navy use

Non-invasive fatigue measurement methods that can be used in the mission environment

Shift schedule guide to aid in determining shift lengths for various mission durations

Potential savings from avoiding fatigue-related failures • Program Cost: \$236 million for 3 Dry Combat Submersibles • Personnel Cost: training a Navy SEAL is estimated to be \$350,000 - \$500,000

Potential benefits from increased cognitive performance Increased alertness, vigilance, and focus to ensure mission SUCCESS

Time saved for future projects

• VT senior design: 4 months for research and IRB application • DCS Simulator: Suggested tasks to mimic the Pilot and **Co-Pilot demands**

• SDVT-2: Methods to accurately measure fatigue during missions