

Company

Virginia Tech

Grado Department of Industrial and

Systems Engineering

Sponsored by Moog

Financing the materials required to build

Project Description

Fully manual assembly cell to teach

80 of the same type of tool will be

assembled through the cell.

Training begins with not optimal

workstation layout and process.

- After training, trainees change the

layout and process applying lean

- Tool is disassembled to start and is

- Disassembled parts of the tool will be

stored in an inventory warehouse.

Assisted with design and lean concept

Located in Blacksburg, VA

Moog's Radford, VA location

the cell (~\$10,000).

implementation.

lean concepts.

needed.

Durham Hall 197 Learning Factory

Lean Manufacturing Cell Construction

Value

Improve VT ISE Department: Students will be able to learn and apply lean manufacturing concepts in a hands on environment.

Research Opportunities: Faculty will be able to conduct research in a manufacturing facility. For example, using exoskeletons to research human factors or ergonomics.

External Organizations: The facility will be developed to host trainings for organizations to train employees on lean concepts. This can be a source of revenue as similar trainings bring in over \$10,000 for a 8-hour training session.

Solution

The design of a Lean cell was created by a collaborative effort with Moog, VT ISE department, Volvo, and the HTW Berlin Learning Factory.

Workstations

Six total workstations: four 3-ft wide, two 5-ft wide. Five-foot wide allows the possibility to add 2 people to the workstation.

Inventory Carts

Four inventory carts.

Will be used in the suboptimal layout -- batch flow -- to move WIP from one station to the next.

Product

A tool was decided by an analysis of six alternatives.

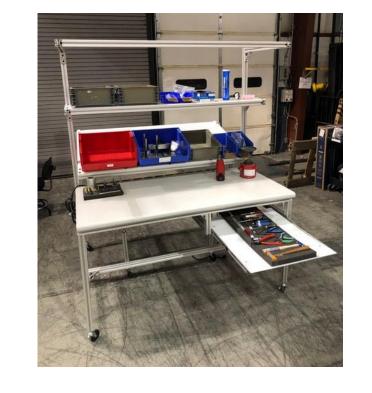
A multi tool was determined best based on project constraints and needs.

Bins

Measured volume of each part of the disassembled tools. Three different bin sizes were chosen to store at least 20 parts per bin.

Inventory Warehouse

The tools will be stores disassembled in an inventory warehouse.


The warehouse holds the volume of 80 multitools.

Disassembly Station

Prototype design was too big (5 ft wide, 5 ft deep) for the decided tool.

Will be used as disassembly station.

Future

Moog Contacts: Matt Carroll

& Brandon Spangler

Team Members: Kathline

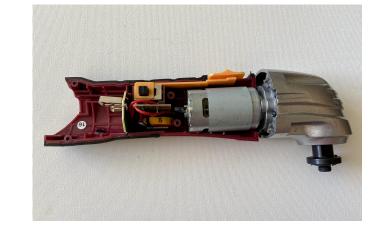
Faculty Advisor: Evandro Minato

Langenfeld, Brent Schultz,

Dylan Michaud, Kevin Shen

Cell designed with future improvements in mind.

Mobile Robot (MiR 100) being implemented for material handling.



Potential improvements: Industry 4.0, Automation, Digitized SOP

Standard Operating Procedure

An optimal and suboptimal standard operating procedure (SOP) for assembly of the multi tool was completed.

	Station	
1	Apply tool head and screw motor to silver top	0:55
2	Place motor and switch, close casing	1:00
3	Screw 2 body screws and 1 head screws	0:50
4	Screw 2 body screws and 1 head screws	0:50
5	Screw 2 head screws, battery and test	0:45

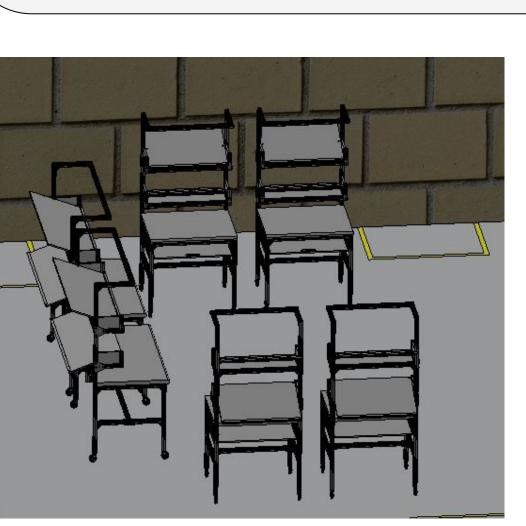
Acknowledgements

Company Contacts: Matt Carroll and

Brandon Spangler

Moog: Dan Arrington

Faculty Advisor: Evandro Minato VT ISE Contacts: Dr. Jaime Camelio


and Matt Earnest

HTW Berlin Learning Factory Contact:

Ute Dietrich

Researchers: Robert Velasco, Ricardo Gonzalez, Divya Matthews,

Felipe Matamoros

concepts.

Optimal Layout

U-line.
One piece flow.
Process is spread
equally across
the stations.