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Abstract 

In many manufacturing processes, process data are observed in the form of time-based profiles, which 

may contain rich information for process monitoring and fault diagnosis. Most approaches currently 

available in profile monitoring focus on single-stage processes or multistage processes with repeating 

cyclic profiles. However, a number of manufacturing operations are performed in multiple stages, where 

non-repeating profiles are generated. For example, in a broaching process, non-repeating cyclic force 

profiles are generated by the interaction between each cutting tooth and the workpiece. This paper 

presents a process monitoring method based on Partial Least Squares (PLS) regression models, where 

PLS regression models are used to characterize the correlation between consecutive stages. Instead of 

monitoring the non-repeating profiles directly, the residual profiles from the PLS models are monitored. 

A Group Exponentially Weighted Moving Average (GEWMA) control chart is adopted to detect both 

global and local shifts. The performance of the proposed method is compared with conventional methods 

in a simulation study. Finally, a case study of a hexagonal broaching process is used to illustrate the 

effectiveness of the proposed methodology in process monitoring and fault diagnosis. 

Keywords: Broaching, cyclic signals, EWMA control chart, multistage manufacturing processes, partial 

least squares regression 

 

1. Introduction 

In a data-rich manufacturing environment, high-density data of process conditions are continuously 

collected over time. These process data generate profiles, which are widely used for process monitoring 
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and fault diagnosis. In general, the objective of process monitoring is to detect any process change as 

soon as it occurs to prevent quality losses.  

Profile monitoring has received considerable attention in the Statistical Process Control (SPC) 

literature, and it has been used in various applications including calibration process (Kang and Albin, 

2000), healthcare and public health surveillance (Woodall, 2006), and a lot of manufacturing process such 

as turning (Colosimo et al., 2008), welding, stamping (Jin and Shi, 2001), and semiconductor 

manufacturing (Jin and Liu, 2013). In profile monitoring, process quality is characterized by the 

relationship between the response variable and the explanatory variables (Kim et al., 2003; and Woodall 

et al., 2004). Approaches have been developed for monitoring linear profiles, including Kang and Albin 

(2000); Kim et al. (2003); and Zou et al. (2006). Also, as a growing number of process variables 

demonstrate nonlinear relationships with each other, extensive research efforts have been focused on 

nonlinear profile monitoring. Current nonlinear profile monitoring schemes include parametric (Ding et 

al., 2006; and Jensen and Birch, 2009) and nonparametric approaches (Zou et al., 2008; Qiu et al., 2010; 

Paynabar and Jin, 2011), most of which have been summarized in Noorossana et al. (2011).  

In recent years, a special class of nonlinear profiles, called cyclic or cycle-based signals, has been 

studied. Cyclic signals usually refer to signals collected from repeating operations, such as stamping 

processes (Jin and Shi, 1999a, 2000, 2001; Zhou et al., 2006) and forging processes (Zhou and Jin, 2005; 

Zhou et al., 2005; Wang et al., 2009; and Yang and Jin, 2012). As the profiles are obtained from 

repeating operations, they are presumed to follow the same or similar statistical distribution under normal 

operating conditions. To analyze these profiles, current approaches include signal compression based on 

wavelet transformation and denoising (Jin and Shi, 1999a), principal components analysis and clustering 

methods (Zhou and Jin, 2005), principal curve method (Kim et al., 2006), and sparse component analysis 

method (Yang and Jin, 2012). In terms of SPC, some techniques that have been considered include 

directionally variant control chart systems for both known and unknown fault detection (Zhou et al., 

2005), T
2
 control chart based on selected levels of wavelet coefficients (Zhou et al., 2006), process 

monitoring based on global and local variations in multichannel functional data (Wang et al., 2009), 
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multichannel profile monitoring and diagnosis based on uncorrelated multilinear principal component 

analysis (Paynabar et al., 2013; and Paynabar et al., 2015), and automatic process monitoring technique 

based on recurrence plot methods (Zhou et al. 2015).  

 
Fig. 1. Multistage manufacturing process with non-repeating cyclic profile outputs 

In summary, most approaches in profile monitoring focus mainly on the single-stage processes with 

profile outputs or multistage processes with repeating cyclic profiles. However, some manufacturing 

operations consist of multiple stages and the conditions of different stages are characterized as non-

repeating cyclic profiles. For example, in a broaching process, the desired contour in a part is sequentially 

shaped through material removal by multiple teeth. The performance of each tooth or each set of teeth can 

be reflected by the cutting force collected over time, i.e., a cutting force profile (Axinte and Nabil, 2003; 

and Shi et al., 2007). Each tooth or each set of teeth is considered as a stage in this process. The cutting 

force profiles of the downstream tooth or set of teeth are largely affected by amount of material removed 

by previous teeth and the condition of the currently cutting tooth (Robertson et al., 2013). As illustrated in 

Fig. 1, when a tooth breaks at the jth stage on the right panel, the cutting force profile of the jth stage 

becomes smaller than it should be under normal conditions, due to the changed dimension of the tooth, 

and the uncompleted material removal left by the jth stage is accomplished by the (j+1)th stage. Thus, the 

cutting force profile of the (j+1)th stage becomes larger than it is under normal conditions. In Fig. 2, four 

broaching force profiles from different operating conditions are shown. Due to the engagement and 

disengagement of the multiple teeth on the broach, the profiles collected under normal operating 
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conditions demonstrate cyclic patterns. In addition, given that the material removal rates for different 

teeth are based on different designed geometries of the teeth, the cutting force profiles at different teeth do 

not follow the same or similar statistical distribution. Moreover, there are global and local shifts which 

can both possibly occur in the process. Therefore, the repeating cyclic profile monitoring methods in the 

literature may not be effective for such a process like broaching.  

 
Fig. 2. Cutting force profiles collected from broaching process 

Even though this paper is motivated by broaching process with non-repeating cyclic profiles, it should 

be noted that non-repeating cyclic profiles are present in various multistage manufacturing processes, 

including temperature change over time profiles collected in fruit drying processes (Ho et al., 2002), CaS 

level in a SO2 reduction chemical conversion processes (Sohn and Kim, 2002), and many other machining 

operations such as end milling (Sutherland and DeVor, 1986).  

In this paper, profiles collected from individual stages are called non-repeating cyclic profiles. It 

should be noted that the well-studied repeating cyclic operations can be regarded as special cases for the 

non-repeating cyclic profiles. Additionally, the profiles at all stages are usually continuously collected in 

temporal order, which results in one profile for each multistage process. The profile containing the 

information of all the stages in the entire multistage process is called the original profile of the process. 
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For example, Fig. 2 demonstrates four original profiles collected from the broaching process under 

different operating conditions. 

The objective of this paper is to detect a shift in multistage manufacturing processes with non-

repeating cyclic profiles, and this paper focuses on simultaneously detecting two types of process mean 

shifts, as illustrated in Fig. 2, namely the global shifts and the local shifts. The global shifts indicate the 

process changes resulting in mean shifts occurring at all the stages in the same direction, such as 

misalignment of the broach tool or large pilot hole in the workpiece, while the local shifts are the process 

changes leading to mean shifts of the profiles at only one or its adjacent stages, which indicates some 

change of distribution in material removed by those adjacent teeth, such as wear or breakage of a tooth.  

In the monitoring of a non-repeating cyclic profile, a common baseline distribution cannot be 

identified for profiles at multiple stages. Instead, the correlation between profiles from consecutive stages 

should be modeled and monitored. In the literature, such modeling and monitoring methods have been 

widely used in multistage manufacturing processes, including cause-selecting charts (Zhang, 1984, 1985, 

and 1992), and regression adjustment approaches (Hawkins, 1991 and 1993). Furthermore, Jin and Shi 

(1999b) proposed the use of linear state space models to characterize variation propagation between 

multiple stages. Zantek et al. (2006) proposed to use simultaneous CUSUM charts to monitor multiple 

prediction errors at the same time. A comprehensive review of the approaches and extensions related to 

multistage process monitoring is given by Tsung et al. (2008). Furthermore, Xiang and Tsung (2008) 

proposed an approach to convert the multistage process into a multi-stream process composed of the 

standardized One-Step ahead Forecast Errors (OSFEs) at all the stages. They adopted the group control 

charts proposed by Nelson (1986) to monitor a multi-stream process, which was defined as a process with 

several streams of outputs. Zou and Tsung (2008) developed a directional MEWMA scheme based on 

generalized likelihood ratio tests for multistage process monitoring. Jin and Liu (2013) proposed a control 

charting system to use regression tree models for serial-parallel multistage manufacturing processes. 

Zhang et al. (2015) proposed a Phase I analysis method for multivariate profile data based on functional 

regression adjustment and functional principal component analysis. All these methods have good 
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capability in identifying the potentially shifted stage. However, their methods experienced some 

limitations to monitor the non-repeating cyclic profiles. For example, the global shifts cannot be 

effectively detected by the OSFEs obtained from consecutive stages. The relationship between 

consecutive stages will not change when all stages experience the mean shifts with similar magnitudes in 

the same direction. 

In this paper, a Partial Least Squares (PLS) regression model is used to characterize the relationship 

between the profiles from consecutive stages and thus standardized OSFEs can be obtained. Then, 

multiple streams are monitored simultaneously under the assumption that the OSFEs are identically 

distributed. The multi-stream process is comprised of the following: 1) the streams of the OSFEs which 

are used to detect local mean shifts in the process; 2) one stream of the global mean of the original profile, 

which is used for global mean shift detection. Then, a Group Exponentially Weighted Moving Average 

(GEWMA) control chart is used to monitor the extracted multiple streams simultaneously. In the 

proposed methodology, when a shift is detected, the potential root cause can be identified. This includes 

determining whether the shift occurs locally or globally, and locating any locally shifted stage. 

The remainder of the paper is organized as follows. In Section 2, the multi-stream process extracted 

from the multistage process is introduced, and a multistage modeling approach based on PLS regression 

to obtain the OSFEs is proposed. In Section 3, a GEWMA monitoring scheme and the diagnostic 

approach for the proposed chart is introduced. Simulation studies are used to evaluate the performance of 

the process monitoring and diagnosis in Section 4. A case study of a broaching process monitoring is 

presented in Section 5. Finally, Section 6 draws conclusions and presents potential future research topics. 

 

2. Multi-stream Extraction from Original Profiles 

In this section, the configuration of the multi-stream process extracted from the original profiles is 

introduced. PLS regression models are proposed to model the relationship between the profiles of 

consecutive stages. 
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2.1. Multi-stream Processes 

Multiple streams can be extracted from original profiles to isolate the global and local information of 

different stages in the process. There are quite a few methods including Wavelet Decomposition and 

Hilbert Huang Transformation that can extract global information from the original profile (Burrus et al., 

1997; Wu et al., 2007). However, due to the smoothing concern in most of these transformations, the 

extracted global trend will always take local shift information from the original profile, which makes it 

difficult to determine whether the shift is a global change or a local one at a specific location.  Therefore, 

the global mean of the original profile is used to minimize the effect of local change on the global trend 

information. 

Considering that the total number of stages in a process is q, the potential streams available will 

include one stream of the global mean of the original profile and (q-1) streams obtained from the OSFEs 

of consecutive stages. Not only can this configuration make full use of the information contained in the 

original profiles, but it can also ensure that the extracted process streams have explicit engineering 

explanations. Each process stream has its one-to-one correspondence to one type of shift or one specific 

location of the local shift. The global stream is responsible for detecting global shifts; while the (q-1) 

OSFEs are responsible for detecting the local shifts at the corresponding stage.  

2.2. Profile Segmentation 

The original profile will be segmented such that each segment represents the output from one stage. The 

segmentation can provide fault diagnostic guidelines to locate the shifted stage when a shift is detected. It 

can be observed in Fig. 1 that each stage starts with a sharp increase of the force as a new broach tooth 

engages with the workpiece and ends with a sharp decrease of the force as a tooth disengages (Axinte et 

al., 2004; and Klocke et al., 2012). Thus, one local minimum point indicates the landmark between 

adjacent stages. Even if there is a local shift, the local minimum point still exists as it represents the 

engagement of a new tooth to the workpiece. Therefore, the original profiles can be segmented by the 

valleys in the profiles based on the process knowledge.  
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Given the sampling rate of the specific sample, the predetermined cutting speed, and the pitch of the 

broach, the profile valleys can be found easily by searching the minimum point in the potential scope 

which comes from the tool displacement relative to the workpiece and takes into account the process 

uncertainty, such as geometry deviation of the tooth, and sensory measurement error in the system. 

Denote the ith original profile as Ci(t) (i=1,2,…,m) which can be segmented into q profiles as Xi,j(t) 

(i=1,2,..,m; j=1,2,…,q). The procedure is illustrated in Fig. 3. After segmentation, each profile only has 

one maximum value and characterizes the operating condition of its corresponding stage, as shown in Fig. 

3. Due to the uncertainty in the process, the segmented profiles may not have the same dimension after 

segmentation. In that case, linear interpolation can be used to adjust the dimensions of different stages to 

the same value. 

 
Fig. 3. Profile segmentation 

2.3. PLS Modeling 

The objective of PLS modeling is to remove the heterogeneity among the stages to obtain multiple 

homogeneous process streams under the normal manufacturing conditions. To model the relationships 

between 𝑿∙,𝒋  and 𝑿∙,𝒋+𝟏  using PLS regression, the underlying assumption is that the major variation 

pattern in  𝑿∙,𝒋+𝟏 can be described with a small number of Principal Components (PCs) extracted from 𝑿∙,𝒋.  

In the PLS modeling approach, the profile of each stage is considered as a multivariate vector. A 

series of PLS regression models are estimated to describe the correlation between each pair of 

consecutive profiles. As shown in Fig. 4, the covariance between 𝑿∙,𝒋  and  𝑿∙,𝒋+𝟏  are maximized by 

extracting Aj PCs from these two matrices that could explain a predefined percentage of variance in the 

response matrix  𝑿∙,𝒋+𝟏. Then the OSFEs of these models are assumed to follow the same distribution 
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under the normal operating conditions. As illustrated in Equation (1), 𝜺𝒊,𝒋+𝟏 is the OSFE of the (j+1)th 

stage in the ith observation (i=1,2,…,m; j=1,2,…,q-1). 

 𝑿𝒊,𝒋+𝟏 = 𝑓𝑗(𝑿𝒊,𝒋) + 𝜺𝒊,𝒋+𝟏, (1) 

where 𝑿𝒊,𝒋 and 𝑿𝒊,𝒋+𝟏 denote the profiles collected from the jth and (j+1)th stages in the ith observation. 

For each pair of consecutive stages 𝑿∙,𝒋 and 𝑿∙,𝒋+𝟏 (j=1,2,…,q-1), one PLS regression model is estimated 

based on a fixed set of m samples. The PLS regression models can be obtained using the following 

procedures (Höskuldsson, 1988). 

 
Fig. 4. An illustration of PLS regression model between the profiles at the consecutive stages (redrawn 

from Höskuldsson, 1988) 

Step 1 The estimated mean of  𝑿∙,𝒋 and 𝑿∙,𝒋+𝟏 are subtracted from 𝑿∙,𝒋 and 𝑿∙,𝒋+𝟏 to obtain 𝑬∙,𝒋 and 𝑬∙,𝒋+𝟏, 

where 𝑿∙,𝒋  is an m×k matrix containing m samples of the jth stage. The centering is 

implemented by  

 𝑬∙,𝒋 = 𝑿∙,𝒋 − 𝟏𝝁𝒋′, (2) 

where 𝝁𝒋 is a k×1 vector of the column means for matrix 𝑿∙𝒋, and 𝟏 is an m×1 vector of ones. 

Step 2  𝐴𝑗 principal components (PCs) are extracted one by one from 𝑬∙,𝒋 and 𝑬∙,𝒋+𝟏, respectively, to 

exceed the total percentage of explained variance in  𝑬∙,𝒋+𝟏 , denoted as pm. The PCs are 

extracted based on the following iterations: 



10 

 

Step 2.0 Initialize 𝑬∙,𝒋
𝟎 = 𝑬∙,𝒋, 𝑬∙,𝒋+𝟏

𝟎 = 𝑬∙,𝒋+𝟏,and  𝒖∙,𝒋+𝟏
𝟎 = first column of 𝑬∙,𝒋+𝟏

𝟎 ; 

For 𝑎 = 1: 𝐴𝑗 

Extract the PCs 𝒖∙,𝒋
𝒂  and 𝒖∙,𝒋+𝟏

𝒂  from 𝑬∙,𝒋
𝒂−𝟏 and 𝑬∙,𝒋+𝟏

𝒂−𝟏   by the following sub-steps 

Step 2.1 Calculate the coefficient vector 𝒒𝒋
𝒂  of the ath PC for  𝑬∙,𝒋

𝒂−𝟏  by 𝒒𝒋
𝒂 =

𝑬∙,𝒋
𝒂−𝟏𝒖𝒋+𝟏

𝒂−𝟏/(𝒖𝒋+𝟏
𝒂−𝟏′𝒖𝒋+𝟏

𝒂−𝟏), where 𝒒𝒋
𝒂 is usually called the weight vector for the 

ath PC, and then scale 𝒒𝒋
𝒂 to be length of one 

Step 2.2  Calculate the ath PC 𝒖𝒋
𝒂 for the jth stage by 𝒖𝒋

𝒂 = 𝑬∙,𝒋
𝒂−𝟏𝒒𝒋

𝒂 

Step 2.3 Calculate the coefficient vector 𝒒𝒋+𝟏
𝒂  of the ath PC for  𝑬∙,𝒋+𝟏

𝒂−𝟏  by 𝒒𝒋+𝟏
𝒂 =

𝑬∙,𝒋+𝟏
𝒂−𝟏 𝒖𝒋

𝒂/(𝒖𝒋
𝒂′𝒖𝒋

𝒂) and then scale 𝒒𝒋+𝟏
𝒂  to be length of one 

Step 2.4 Calculate the ath PC 𝒖𝒋+𝟏
𝒂  for the (j+1)th stage by 𝒖𝒋+𝟏

𝒂 = 𝑬∙,𝒋+𝟏
𝒂−𝟏 𝒒𝒋+𝟏

𝒂  

Step 2.5 The loadings vectors of the ath PC for the jth and (j+1)th stage can be 

estimated by least squares 𝒇𝒋
𝒂 = 𝑬∙,𝒋

𝒂−𝟏′
𝒖𝒋

𝒂/𝒖𝒋
𝒂′𝒖𝒋

𝒂  and 𝒇𝒋+𝟏
𝒂 = 𝑬∙,𝒋+𝟏

𝒂−𝟏 ′
𝒖𝒋+𝟏

𝒂 /

𝒖𝒋+𝟏
𝒂 ′𝒖𝒋+𝟏

𝒂  

Step 2.6 Regress 𝒖𝒋+𝟏
𝒂  on 𝒖𝒋

𝒂 to estimate the regression coefficients for the ath PC by 

𝑩𝒋
𝒂 = 𝒖𝒋+𝟏

𝒂 ′𝒖𝒋
𝒂/(𝒖𝒋

𝒂′𝒖𝒋
𝒂) 

Step 2.7  Subtract the extracted PCs to obtain new residuals by 𝑬∙𝒋
𝒂 = 𝑬∙𝒋

𝒂−𝟏 − 𝒖∙𝒋
𝒂𝒇𝒋

𝒂′, and  

𝑬∙,𝒋+𝟏
𝒂 = 𝑬∙,𝒋+𝟏

𝒂−𝟏 − 𝑩𝒋
𝒂𝒖𝒋

𝒂𝒒𝒋+𝟏
𝒂 ′ 

End 

The extracted PCs can explain a large proportion of the variance. 𝑸𝒋 is a 𝑘 × 𝐴𝑗 transformation 

matrix containing all the 𝒒𝒋
𝒂’s (𝑎 = 1,2, . . . , 𝐴𝑗 ), and 𝑼∙,𝒋  is the extracted principal components 

containing all the 𝒖𝒋
𝒂’s (𝑎 = 1,2, . . . , 𝐴𝑗). 

 𝑼∙,𝒋 = 𝑬∙,𝒋𝑸𝒋 . (3)  
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After extracting Aj PCs, there is still a small portion of variance that has not been modeled, which 

is regarded as noise. That component is calculated by  

 𝑬∙,𝒋
𝑨 = 𝑬∙,𝒋 − 𝑼∙,𝒋𝑭∙,𝒋′, (4) 

where 𝑭∙,𝒋 is usually named as the loading matrices and it contains all the 𝒇𝒋
𝒂’s (𝑎 = 1,2, . . . , 𝐴𝑗). 

Step 3  Based on the iterations in Step 2, a multiple linear regression model can be obtained to 

characterize the correlation between the PCs of the consecutive stages, where 𝑩𝒋 is the 𝐴𝑗 × 𝐴𝑗 

diagonal coefficient matrix with 𝐵𝑗
𝑎’s at the diagonal, and 𝑯∙,𝒋+𝟏 is the residual matrix, 

 𝑼∙,𝒋+𝟏 = 𝑼∙,𝒋𝑩𝒋 + 𝑯∙,𝒋+𝟏. (5) 

Step 4  Given Equations (2), (3), and (5), Equation (4) can be rewritten and rearranged to obtain 

Equation (6), where 𝒃𝒋 is the k×k transformation matrix, 𝑳𝒋 is the intercept term, and 𝜺∙,𝒋+𝟏 is 

the m×k residual matrix. 

 𝑿∙,𝒋+𝟏 = 𝑳𝒋 + 𝑿∙,𝒋𝒃𝒋 + 𝜺∙,𝒋+𝟏, (6) 

where 𝒃𝒋 = 𝑸𝒋𝑩𝒋𝑭∙,𝒋+𝟏
′ , 𝑳𝒋 = 𝟏𝝁𝒋+𝟏

′ − 𝟏𝝁𝒋
′𝑸𝒋𝑩𝒋𝑭∙,𝒋+𝟏

′ , and 𝜺∙,𝒋+𝟏 = 𝑬∙,𝒋+𝟏
𝑨 − 𝑯∙,𝒋+𝟏𝑭∙,𝒋+𝟏′. 

The computing algorithm used for PLS regression modeling is the Nonlinear Iterative Partial Least 

Squares (NIPALS) algorithm (Wold, 1966). For more information about PLS regression models and the 

computing algorithms, see Geladi and Kowalski (1986) and Wold et al. (2001).  

The number of stages (q) is determined by how many non-repeating cycles in the process. For 

example, in a broaching process, the number of stages is defined as the total number of teeth on the 

broaching tool. The value of the parameter 𝐴𝑗 could be regarded as the tuning parameter in the proposed 

method. In the literature, there are quite a few methods proposed to select the number of components 

extracted, among which the methods of minimizing the Predictive Residual Sum of Squares (PRESS) 

based on cross validation (Wold et al., 2001; Rosipal and Krämer, 2006) are the most popular. However, 

in the proposed method, the balance among the accuracies of the models between different stages is more 

of concern than optimizing the modeling accuracy of every model individually. Therefore, the Aj value for 
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the PLS regression model between the jth and (j+1)th stages has been selected based on the training 

dataset by searching for the smallest number of components which could exceed a predefined percentage, 

i.e., 95%, of the total variance explained in the profiles at the (j+1)th stage. Additionally, the ARL 

performance of the proposed method given different percentages of total variance explained pm are 

summarized in the Supplemental Material A, which illustrates high robustness in the proposed control 

charting system. 

The required number of reference samples (m) depends on the dimension of the data and the 

correlation within the data. For strongly correlated data sets, the number of reference samples m can be 

smaller than the dimension of the data yet a reasonably robust estimation can still be obtained (Chun and 

Keleş, 2010).  

Based on the reference data set, (q-1) PLS regression models can be estimated. For future 

observations, (q-1) OSFEs can be calculated by subtracting the predicted profiles from the observed 

profiles. The OSFEs can be used to characterize the working condition of each stage, which can be 

monitored simultaneously as (q-1) streams in a control charting scheme.  

 

3. GEMWA Monitoring and Diagnostic Scheme for Global and Local Shift Detection 

Given multiple streams extracted from original profiles, a Group Exponentially Weighted Moving 

Average (GEWMA) monitoring scheme is adopted to monitor the different streams simultaneously and 

detect global and local shifts.  

3.1. GEWMA Monitoring Scheme for Simultaneous Global and Local Shift Detection 

To use the GEWMA chart to monitor a multi-stream process, the streams should follow two assumptions. 

First, each stream should have the same mean and same variation. Second, the distribution of each single 

stream should be “approximately normally distributed” (Nelson, 1986). To satisfy the first assumption, 

the multiple streams extracted in Section 2 can be scaled to have the mean and variation based on their 

distribution. For the second assumption, the normality assumptions of the multiple streams will be 
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validated later in the case study based on the real data set. Furthermore, the EWMA chart used in the 

proposed method is usually quite robust to non-normal distributions (Stoumbos and Sullivan, 2002). 

The GEWMA monitoring statistics based on the global mean and the OSFEs are calculated to detect 

the global and local shifts. First, the deviations from nominal 𝜺𝒊,𝒋(𝑖 = 1,2, … , 𝑚, 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑞) are 

calculated as 

 {
𝜀𝑖𝑗 = 𝑐�̅� − 𝑐̿,       if 𝑗 = 1             

𝜺𝒊𝒋 = 𝑿𝒊𝒋 − 𝑿𝒊𝒋,̂  if 𝑗 = 2,3, … , 𝑞
 , (7) 

where 𝜀𝑖1 denotes the deviation from nominal for the global mean of the original profiles, 𝑐�̅� denotes the 

global mean of the ith original profile, and 𝑐̿ is the average global mean obtained from the reference 

samples. Then the GEWMA statistics can be calculated based on the Equations (8) and (9) in which the 

𝜺𝒊,𝒋 ’s of the same stream are exponentially weighted across the sequential observations, and the 

multivariate EWMA statistic can be calculated based on the method proposed by Lowry et al. (1992). 

That is 

 {
𝑍𝑖1 = 𝜆𝜀𝑖1 + (1 − 𝜆)𝑍𝑖−1,1, if 𝑗 = 1             

𝒁𝒊𝒋 = 𝜆𝜺𝒊𝒋 + (1 − 𝜆)𝒁𝒊−𝟏,𝒋, if 𝑗 = 2,3, … , 𝑞
 , (8) 

where 0 < λ < 1  is the smoothing parameter in traditional EWMA charts.  

 𝑇𝑖𝑗
2 = {

𝑍𝑖1
2 /𝜎𝑍1

2 ,         if 𝑗 = 1             

𝒁𝒊𝒋
′ (∑𝒁

𝒋
)−1𝒁𝒊𝒋, if 𝑗 = 2,3, … , 𝑞

 , (9) 

where 

 {
𝜎𝑍1

2 =
𝜆

2−𝜆
[1 − (1 − 𝜆)2𝑖]𝜎𝜀1

2 , if 𝑗 = 1            

∑𝒁
𝒋

=
𝜆

2−𝜆
[1 − (1 − 𝜆)2𝑖]∑𝜺

𝒋
, if 𝑗 = 2,3, … , 𝑞

 . (10) 

Here 𝜎𝜀1
2  denotes the variance of the deviations from the nominal of the global mean, and it is estimated 

based on the 𝜀𝑖1’s of the historical data; while ∑𝜺
𝒋
 represents the estimated variance covariance matrix of 

the OSFEs of the jth stage, and it is estimated using the method based on successive differences, which is 

recommended by Sullivan and Woodall (1995). 
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As the 𝑇𝑖𝑗
2 statistic approximately follows a χ

2
 distribution with degree of freedom value 𝑝𝑗 and 

 𝑝𝑗 = {
1, if 𝑗 = 1              
𝑘, if 𝑗 = 2,3, … , 𝑞

  , (11) 

the 𝑇𝑖𝑗
2 statistics have different mean and variances given various 𝑝𝑗 values. To deal with the dimensional 

inconsistency in all the streams, the adjustment suggested in Xiang and Tsung (2008) is performed as 

 �̃�𝑖𝑗
2 =

𝑇𝑖𝑗
2−𝑝𝑗

√2𝑝𝑗
 . (12) 

Therefore, the �̃�𝑖𝑗
2 statistics of all the streams have the same mean of zero and the same variance of one. 

The GEMWA statistics of the ith observation can thus be defined as the largest �̃�𝑖𝑗
2 statistics of all the 

streams, which is 

 𝑀𝑍𝑖 = 𝑚𝑎𝑥1≤𝑗≤𝑞(�̃�𝑖𝑗
2) , (13) 

for i=1,2,…,m. The control limit of the chart is given by 

 ℎ = 𝐿
𝜆

2−𝜆
 , (14) 

where L and h are design parameters of the chart. Given a desired ARL0 and a predefined 𝜆 value, the 

value of L and h can be obtained by simulation. The control chart signals when an 𝑀𝑍𝑖
 
value exceeds the 

control limit h, indicating a shift is detected in the process.  

In addition, although the non-repeating cyclic profiles are not assumed to be identically distributed, it 

is assumed that the monitoring statistics of the OSFEs at all the stages approximately follow the same 

distribution after the adjustment based on the dimension of the OSFEs. Therefore, after the calculation of 

Equation (12), the streams derived from the OSFEs can be monitored with one group chart while the 

global stream can be monitored separately if its dimension varies significantly from the other streams. 

3.2. The Diagnostic Approach of the Proposed Control Chart 

Once a process shift is detected, the fault diagnostic approach is used to determine what type of shift has 

occurred. If there is a local shift detected, the diagnostic approach will further locate the shifted stage. As 

illustrated in Equation (13), the maximum of all the �̃�𝑖𝑗
2  statistics is used as the monitoring statistics. 
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Xiang and Tsung (2008) suggested that the shifted stage should be argmax1≤𝑗≤𝑞(�̃�𝑖𝑗
2)  for the ith 

observation. Therefore, the diagnostic operation can be performed by two steps: 

Step 1 Determine if there is a global shift occurring by checking if �̃�𝑖1
2 > ℎ is true. If the inequality holds, 

then a global shift occurs in the process. 

Step 2 Determine if there is a local shift by checking if  �̃�𝑖𝑗
2 > ℎ (𝑗 = 2,3 … , 𝑞), and if any, identify the 

shifted stage as argmax2≤𝑗≤𝑞(�̃�𝑖𝑗
2). 

Based on the monitoring scheme and fault diagnostic approach proposed in this section, detection of 

global and local shifts and fault diagnosis can be achieved simultaneously.  

 

4. Performance Analysis using Simulation 

The performance of the process monitoring and diagnosis is evaluated using a simulation study. 

Following similar patterns of the real faults and force signals from the broaching process, original profiles 

are generated by summing up a signal component of global trend and a component with non-repeating 

cyclic patterns.  

In the simulation, the number of stages in the process is q=8. The in-control ARL0 are adjusted to 370 

and the value of the smoothing constant 𝜆 used is 0.2. Here 𝜆 is a user specified parameter. If historical 

data has higher weight, the value of 𝜆 should be smaller, or vice versa. The out-of-control signals have 

three types of shifts: 

(1) Global shift: the global component has a mean shift as 𝝁𝝐 = 𝛿 × 𝑑𝑖𝑎𝑔(∑𝐺0)1/2, where 𝛿 and ∑G0 are 

the magnitude of the mean shift and variance covariance matrix of the global trend of the in-control 

profiles, respectively. 

(2) Local wear: the jth stage has a mean shift as 𝝁𝜺 = 𝛿 × 𝑑𝑖𝑎𝑔(∑𝜺
𝒋
)1/2 , where 𝛿  and ∑𝜺

𝒋
 are the 

magnitude of the shift and the variance covariance matrix of the added noise, respectively. 
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(3) Local breakage: the jth stage has a mean shift as 𝝁𝜺 = −𝛿 × 𝑑𝑖𝑎𝑔(∑𝜺
𝒋
)1/2; while its next adjacent 

stage has a mean shift as  𝝁𝜺 = 𝛿 × 𝑑𝑖𝑎𝑔(∑𝜺
𝒋+𝟏

)1/2, where 𝛿 and ∑𝜺
𝒋
 represent the magnitude of the shift 

and the variance covariance matrix of the added noise at the jth stage, respectively. 

Such mean shift patterns are generated in the spirit of local wear and breakage from the real case 

study. The magnitudes of the mean shifts are set as 𝛿 = 0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3  for all three types of 

shifts. The ARL is obtained by averaging 10,000 run lengths. The steady-state performances of the charts 

are compared by first generating ten normal observations in each run and then generating observations 

with sustained global/local mean shift until the chart signals. Any premature signals during the first ten 

normal observations are discarded.  

To deal with the singularity problem in the OSFEs’ variance covariance matrix, PCs are extracted 

from the OSFEs, and the number of PCs is determined by the percentage of variance explained in the PCs, 

i.e., any PC which explains more than 0.05% of the total variance in the OSFE will be retained in the 

monitoring statistics. An excessively large threshold percentage will lead to loss of information in the 

shifts, while a very small threshold percentage cannot solve the singularity problem. Based on the training 

data set, the numbers of PCs extracted are listed in Table 1. It is clear that the numbers listed are 

significantly greater than the dimension of the global stream. Therefore, one one-dimensional EWMA 

chart is used to monitor the global trend while the GEWMA chart is used to monitor the streams of the 

OSFEs. The decision rule of the control chart system is that once either one of the two charts signals, the 

system signals. To achieve comparable in-control ARL with the benchmark methods, false alarm rates 

can be applied to the two charts based on their relative costs of false alarms of the two charts and potential 

loss due to slow detection of different process changes by Bonferroni correction (Wu et al., 2004). In this 

study, the false alarm rate is evenly distributed to the one-dimensional EWMA chart and the GEWMA 

chart, and thus the control chart system has a combined in-control ARL of 370 approximately.  

Table 1. Number of PCs Extracted from OSFEs 

OSFE 2 3 4 5 6 7 8 

Number of PCs 11 11 11 10 11 10 10 
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The numerical results include an Average Run Length (ARL) performance comparison with two 

benchmark methods; one is proposed by Zhou et al. (2006) and the other is proposed by Zou et al. (2008), 

with different preset parameter values, respectively. The two benchmark methods are selected because 

they are effective in detecting mean shifts in complicated profiles. In addition, an EWMA chart based on 

the features extracted from Zhou’s method is used for the performance comparison. This is because the 

method proposed in Zhou et al. (2006) considers a Shewhart-type control chart, while both our proposed 

method and the method proposed by Zou et al. (2008) are EWMA-type control charts, which are usually 

more capable of detecting small shifts. Therefore, the EWMA chart is used to replace the Shewhart chart 

in Zhou’s method for a fair comparison. 

To compare the ARL performances, local wear and local breakage at Stages 2 and 7 are generated in 

the original profiles, and global shifts are also generated. The simulation results of the control chart 

performance are illustrated in Table 2. In this table, GEWMA denotes the proposed approach; Zhou et 

al.’s EWMA denotes the EWMA version of the approach proposed by Zhou et al. (2006), and the 

percentage of energy eliminated from the original profiles denoted as Q is directly related to the number 

of wavelet coefficient levels L involved in the control chart in Zhou et al. (2006). In their method, the 

number of wavelet coefficient levels L used for constructing the monitoring statistics can vary from 1 to 6. 

Zou et al.’s EWMA denotes the method proposed by Zou et al. (2008), and the parameter c denotes a 

tuning parameter to determine the bandwidth used to control the error in nonparametric profile 

representation. In the performance comparison, all the suggested choices of c values are examined. 

The best performing ARL values of all the tested methods for each scenario is bolded in Table 2. The 

proposed GEWMA method outperforms both benchmarking methods in most of the scenarios. In local 

shift detection, the proposed GEWMA scheme outperforms the two methods in all the tested cases. In 

global shift detection, our proposed method outperforms the two benchmark methods under most choices 

of their preset parameter, though when the L value is as small as 1 or 2 the EWMA version of Zhou et 

al.’s method can detect global shifts more quickly. However, when the L value is selected as 1 or 2, the 

local shift detection is significantly slower than our proposed method, especially when there is a local 
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breakage shift Zhou et al.’s EWMA chart can barely detect anything as their out-of-control ARLs are 

close to the in-control ARL. 

Table 2. ARL comparison for various types of shifts 

 

 

Shift 
δ GEWMA 

Zhou et al.’s EWMA Zou et al.'s EWMA 

Stage L=6 L=5 L=4 L=3 L=2 L=1 c=1.0 c=1.5 c=2.0 

In-control - 0 370.6 370.9 370.8 370.3 371.0 370.5 370.3 370.1 370.2 370.0 

Local 

wear 

2 

0.1 187.7 311.7 324.9 313.7 303.8 340.9 363.7 365.6 364.4 368.0 

0.25 13.9 121.1 182.1 193.9 194.4 284.6 350.2 370.3 359.6 359.6 

0.5 4.0 21.6 49.3 72.8 85.7 189.8 294.8 337.4 323.9 335.2 

1 1.9 5.3 9.6 15.7 21.8 80.3 171.7 256.4 182.2 263.6 

1.5 1.3 3.1 5.0 7.4 10.0 39.7 93.6 156.3 71.6 172.4 

2 1.0 2.3 3.4 4.7 6.2 22.3 55.3 79.6 29.7 97.6 

2.5 1.0 1.9 2.6 3.5 4.5 14.6 35.4 37.5 15.2 50.7 

3 1.0 1.7 2.2 2.9 3.5 10.5 24.3 19.8 9.9 26.3 

7 

0.1 241.5 255.8 286.3 249.4 377.7 409.9 362.5 372.4 368.1 360.6 

0.25 19.0 73.0 109.8 82.4 332.0 428.9 352.8 366.3 356.7 357.7 

0.5 4.6 13.9 21.4 18.2 202.2 363.2 280.7 335.6 307.0 335.4 

1 2.1 4.3 5.5 5.3 55.5 161.3 146.2 238.7 145.7 252.0 

1.5 1.5 2.7 3.2 3.1 21.0 69.1 75.4 130.0 54.1 142.6 

2 1.1 2.0 2.4 2.3 11.2 33.4 43.7 58.0 22.3 71.6 

2.5 1.0 1.7 1.9 1.9 7.4 19.6 27.6 27.0 12.3 36.6 

3 1.0 1.4 1.7 1.6 5.5 13.1 19.1 14.5 8.4 19.6 

Local 

breakage 

 

2 

0.1 50.5 114.6 257.0 330.8 344.1 372.1 359.3 368.4 347.0 375.0 

0.25 5.5 14.2 76.9 161.3 188.1 360.4 364.6 346.5 294.7 357.1 

0.5 2.4 4.4 15.2 36.5 48.6 351.9 358.3 287.0 201.8 317.8 

1 1.2 2.0 4.6 7.8 10.3 320.8 361.1 135.8 66.6 209.8 

1.5 1.0 1.4 2.8 4.2 5.3 289.5 346.9 50.6 23.3 110.5 

2 1.0 1.1 2.1 3.0 3.6 259.2 341.0 20.5 11.4 52.0 

2.5 1.0 1.0 1.7 2.4 2.8 231.0 328.6 10.9 7.5 25.5 

3 1.0 1.0 1.5 2.0 2.3 207.2 310.3 7.4 5.6 14.7 

7 

0.1 106.2 162.2 200.0 162.6 361.3 373.3 360.5 374.7 374.9 369.9 

0.25 8.3 20.9 31.3 24.7 363.0 376.0 360.6 358.9 373.4 365.0 

0.5 3.0 5.3 7.0 6.3 368.9 379.8 359.2 313.9 307.3 344.1 

1 1.6 2.3 2.7 2.6 370.8 377.7 361.7 178.9 132.3 261.4 

1.5 1.0 1.7 1.9 1.8 370.6 371.3 354.8 69.0 36.1 154.0 

2 1.0 1.2 1.5 1.4 361.4 368.6 352.0 23.0 12.9 75.8 

2.5 1.0 1.0 1.1 1.1 367.2 375.8 354.0 10.6 7.9 32.8 

3 1.0 1.0 1.0 1.0 362.7 372.9 357.4 7.0 5.8 15.9 

Global All 0.1 328.6 348.6 352.4 334.0 324.1 313.2 293.0 365.1 345.3 369.2 
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0.25 167.4 278.5 267.0 222.0 195.8 156.1 130.7 337.4 246.7 318.2 

0.5 54.8 140.2 116.8 82.7 63.8 46.6 36.2 225.7 96.2 193.3 

1 11.3 30.1 23.1 16.6 13.9 11.1 9.4 63.7 20.1 42.1 

1.5 5.7 11.3 9.3 7.4 6.6 5.6 5.0 18.9 8.8 13.7 

2 3.9 6.6 5.7 4.8 4.4 3.9 3.5 9.1 5.6 7.4 

2.5 3.0 4.7 4.1 3.6 3.3 3.0 2.7 6.1 4.2 5.2 

3 2.4 3.7 3.3 2.9 2.7 2.4 2.2 4.6 3.3 4.0 

 

Moreover, the performances of the benchmark methods are very sensitive to the preset tuning 

parameters. For the method proposed in Zhou et al. (2006), as the L value gets larger the local shift 

detection power improves and the global shift detection power deteriorates. This can be explained by the 

fact that the detection power of either type of shift should be sacrificed for the other type, i.e., the optimal 

performance on detecting local and global shifts cannot be achieved based on the same choice of the L 

value. Furthermore, Zhou et al.’s method also demonstrates extremely high sensitivity when the shifted 

location varies. For example, given the preset parameter value L=3, satisfactory ARL performance can be 

achieved when all the tested global shifts and most of the local shifts occur. However, when there is a 

local breakage at Stage 7, ARL gets extremely large which indicates that the local breakage at Stage 7 is 

almost undetectable. For the approach proposed in Zou et al. (2008), the control chart achieves best 

performance mostly when the value of c is 1.5. However, the ARL performance is also not quite robust 

when the tuning parameter varies within the suggested range. All these results indicate that the 

performances of the benchmark methods are not robust enough to the preset parameter when monitoring 

the non-repeating cyclic profiles. The robustness of the proposed method has been studied, and the ARL 

performance with respect to different percentage values of total variance explained pm in the response 

matrices has been summarized in the Supplemental Material A. 

Therefore, the proposed method gives best results for local shift detection and satisfactory 

performances for global shift detection. This method demonstrates better robustness when shifted location 

varies as shown in Table 2. The advantage of the proposed method in ARL performances lies in the 
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modeling of consecutive stages, which can reduce the total variance of the profiles by modeling their 

relationships with their preceding profiles. 

To analyze the diagnostic performance, 10,000 simulation replicates are performed for the proposed 

approach. Table 3 summarizes the diagnostic accuracy. Motivated by the diagnostic performance metric 

in Zou and Tsung (2008), one can compare the probability that the global shift is identified when the 

control chart signals given a global shift. Furthermore, when there is a local shift, the probabilities that the 

estimated shifted location ζ̂ falls within a given interval, which centers around the actual shift location ζ, 

are also summarized. For example, Pr (ζ̂ = ζ) , Pr (|ζ̂ − ζ| ≤ 1) , and Pr (|ζ̂ − ζ| ≤ 2)  represent the 

probability of the estimated shifted stage index is exactly the actual shifted stage 𝜁, the probability of the 

estimated shifted stage index is included in the interval from ζ − 1 to ζ + 1, and the probability of the 

estimated shifted stage index is included in the interval from ζ − 2 to ζ + 2 , respectively. The three 

probabilities described above are denoted as P0, P1, and P2.  

It can be noted that the proposed method provides very precise diagnostic performance when there is 

a global shift. In addition, when there is a local shift, the probability that the estimated shift stage index is 

within the two adjacent neighbors of the actual shift location is close to 1 in most cases. It can be 

observed that there are a few factors that could affect the diagnostic performance, including the estimation 

accuracy of the regression models, the type of shift that occurs, and the magnitude of the mean shift. The 

relatively low diagnostic accuracy when there is a local wear at Stage 7 is due to the estimation of PLS 

regression model between Stage 7 and 8 is less accurate than the one between Stage 2 and 3. The 

diagnosis performance of the proposed method comes from the steps of profile segmentation and the 

modeling between consecutive stages. 

Table 3. Diagnostic accuracy summary when using the GEWMA chart 

Shift type Shift stage δ 
Proposed Method 

P0 P1 P2 

Local wear  2 

0.1 0.5624 0.6500 0.6500 

0.25 0.9637 0.9716 0.9716 

0.5 0.9952 0.9985 0.9985 

1 0.9990 0.9995 0.9995 
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1.5 0.9991 0.9998 0.9998 

2 0.9999 1.0000 1.0000 

2.5 1.0000 1.0000 1.0000 

3 1.0000 1.0000 1.0000 

7 

0.1 0.3007 0.4600 0.4600 

0.25 0.6485 0.9597 0.9597 

0.5 0.6745 0.9964 0.9964 

1 0.7133 0.9989 0.9989 

1.5 0.7456 0.9996 0.9996 

2 0.7285 0.9998 0.9998 

2.5 0.7853 1.0000 1.0000 

3 0.8311 1.0000 1.0000 

Local breakage  

2 

0.1 0.8681 0.9106 0.9106 

0.25 0.9814 0.9916 0.9916 

0.5 0.9952 0.9993 0.9994 

1 0.9972 0.9998 0.9998 

1.5 0.9999 1.0000 1.0000 

2 1.0000 1.0000 1.0000 

2.5 1.0000 1.0000 1.0000 

3 1.0000 1.0000 1.0000 

7 

0.1 0.6852 0.7666 0.7666 

0.25 0.9309 0.9825 0.9825 

0.5 0.9612 0.9986 0.9988 

1 0.9798 0.9994 0.9995 

1.5 0.9827 0.9999 0.9999 

2 0.9969 1.0000 1.0000 

2.5 0.9996 1.0000 1.0000 

3 0.9999 1.0000 1.0000 

Global Shift All 

0.1 0.5564 - - 

0.25 0.7359 - - 

0.5 0.8854 - - 

1 0.9327 - - 

1.5 0.9381 - - 

2 0.9341 - - 

2.5 0.9225 - - 

3 0.9139 - - 

 

5. Case Study 

In this section, a push hexagonal broaching process is studied to further verify the effectiveness of the 

proposed method. The experimental setup is illustrated in Fig. 5. It replicates the setup of a real-world 
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broaching process with highly controlled displacement of the broach. This process considers 33 stages, 

corresponding to the 33 teeth on the hexagonal broach. During the cutting process, a real-time cutting 

force profile can be obtained using a force sensor embedded in the base of the tensile test machine. 

During the process, the base is moving upwards with a constant speed of one inch per minute. 

 

Fig. 5. Experiment setup (adopted from Robertson et al. (2013) with permission) 

To illustrate the monitoring method, 20 force profiles were collected, including 15 normal runs and 5 

abnormal runs. The first 10 runs were used as reference data set to estimate the model parameters. The 

rest of the runs were used for performance evaluation. The five abnormal runs were designed to represent 

the condition of tool wear on the 30th tooth of the broaching tool to test the monitoring performance. The 

segmented profiles were processed by linear interpolation, such that all segmented profiles had the same 

length (Davis, 1975). The proposed control charting system was implemented to determine if the 

increasing local wear could be detected. To deal with the dimensional inconsistency, one individual chart 

was used for the global trend stream while one group chart was used for the streams of the OSFEs.  

The Phase II monitoring performance is presented in Fig. 6. The MZs of the two charts are plotted 

against the observational order. On the left panel, the number beside each point indicates the stage index 

obtained from the fault diagnostic approach. The control limits for the individual chart hg and the group 

chart hl was obtained by using three standard deviations plus the mean of the monitoring statistics 
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obtained from the Phase I data. It is observed that the chart signaled as soon as there was a process change 

(the sixth observation in the chart), and the diagnostic stages always fell within the ±1 stage interval of 

the real shifted stage, while the individual chart doesn’t signal. 

 
Fig. 6. The GEWMA chart for shift detection 

Furthermore, Henze-Zirkler's multivariate normality test was performed to the extracted PCs of the 

OSFEs obtained from the PLS regression model at each stage (Trujillo-Ortiz et al., 2007). In Fig. 7, the p-

values calculated from all the stages (including the global mean component as the first stage) are plotted. 

There is no sufficient evidence to reject the null hypothesis that the OSFEs are normally distributed, since 

almost all the p-values associated to the tests are much larger than the predetermined significance level of 

0.05. Therefore, the normality assumption is validated based on the real data, which is required for the 

multi-stream process monitoring. 

The case study demonstrates the effectiveness of the proposed GEWMA monitoring and fault 

diagnostic approach in a real application. The early detection of process shifts can help reduce quality 

losses, and the precise shifted stage identification can lower the maintenance costs when a change is 

detected in the process. 
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Fig. 7. The p-values of the Henze-Zirkler's multivariate normality tests 

 

6. Conclusion and Future Work 

Multistage processes with non-repeating cyclic profile outputs are widely encountered in various 

industries. However, current profile monitoring methodologies mainly focus on the profiles obtained from 

single-stage processes or multiple stages with repeating patterns. In this paper, a PLS regression method 

is proposed to model the relationship between profiles from consecutive stages. Thus, the distributional 

heterogeneity among the multiple stages can be removed and identically distributed OFSEs can be 

obtained. A Group EWMA control chart is proposed to detect global and local shifts simultaneously. An 

ARL simulation study shows that the proposed GEWMA chart outperforms previous methods in both 

detection power and robustness. In addition, the proposed diagnostic approach can accurately identify the 

shifted stage in the process. A case study involving a push hexagonal broaching process is used to 

demonstrate the effectiveness of the proposed monitoring and diagnostic methodology. Significant quality 

improvements are expected in multistage process with non-repeating cyclic output through proactive 

adjustment using more effective quality control tools.   

A couple of interesting issues still remain open for future work. First, the proposed control chart is 

directionally invariant, which indicates that the detection power of a mean shift only depends on the shift 

magnitude (Montgomery, 2012). Directional variant monitoring schemes can be explored in future 

research by incorporating directional information to improve the monitoring performance for known 
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specific shift patterns. Second, the effect of signal denoising on the process monitoring performance 

should be studied, as data collected from real industrial settings is usually quite noisy. For example, 

adaptive denoising method can be used to optimize the modeling accuracy of the PLS models to address 

this issue. Third, the effect of estimation errors on the modeling between consecutive stages can be 

explored, as the accuracy of model estimation play an important role in the diagnostic performance for 

local shifts. Fourth, it is likely that there are different extents of wear on consecutive teeth in a broach tool.  

Additional sensing information, such as high definition images, can be used to capture and quantify the 

wear conditions.  The monitoring performance should be further optimized considering the different wear 

extents.  Finally, an online process monitoring and diagnostic scheme based on the non-repeating cyclic 

signals should also be explored. 
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