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In some manufacturing processes, complex profiles are collected to characterize quality status. However, 

some of these profiles may have unequal lengths, which makes the attempt of directly comparing them 

difficult. In addition, when a shift occurs in a profile, it usually affects a segment of continuously 

connected observations. That is, local shifts instead of global shifts are frequently seen. As shift signals 

are easily mixed with allowable mean trends, statistical monitoring of such unaligned profiles becomes a 

challenging task.  In this paper, we propose a framework for monitoring profiles with unequal lengths. 

The profiles are first aligned using a modified robust dynamic time warping (DTW) algorithm, which is 

insensitive to local mean shifts. Penalization-based methods are then used to estimate profile means. 

Finally, mean estimates are utilized in a likelihood ratio test statistic for effective monitoring. Both 

simulation studies and a real example are used to demonstrate the effectiveness of the proposed 

monitoring procedure.  
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 Introduction 1

Statistical process control (SPC) has been widely used in many industrial processes. SPC aims to improve 

process and product quality by reducing process variability. Control charts are one of the most important 

SPC tools for assignable cause identification and variation reduction. In recent years, we have seen many 

processes having quality characterized by complicated profiles. A profile defines a functional relationship 

between a response variable (Y ) and one or more explanatory variables ( sX ). Over the past decades, as 

the use of sensing technology expands, profile monitoring has become more prevalent due to the large 

amounts of data available in diverse manufacturing systems and service areas.  

Much work has been done when profiles can be characterized by parametric regression models. Such 

parametric models, either linear or nonlinear, are then monitored by multivariate 
2T  control charts,

1
  self-
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starting control charts,
2
 multivariate EWMA schemes,

3
 change point approaches,

4,5
 etc. Abnormal shifts 

in profiles are expected to lead to model changes and be detected by such charts.  

In certain applications, a profile cannot be well fitted by any parametric forms.
6
 In such cases, 

nonparametric monitoring methods are developed. Chang and Yadama
7
 used B-spline approximations to 

monitor non-linear profiles. The authors first applied a wavelet transformation to separate true signals 

from noises, after which they formulated transformed profiles using a B-spline model; a 
2T  control chart 

was then used to identify profile mean shifts or shape changes. Shiau et al.
8
 and Paynabar et al.

9
 utilized 

principal component analysis (PCA) projection to monitor profiles, and De Ketelaere et al.
10

 gave a 

detailed overview of PCA-based monitoring approaches.  Jeong et al.
11

 used wavelet transformation to 

handle complicated profiles first before monitoring.  

Currently, most widely used parametric and nonparametric profile monitoring approaches share 

certain common assumptions. First, all profiles to be monitored have an equal length, that is, vectors that 

characterize the profiles have an equal dimension. Second, sampling points of the explanatory variable are 

fixed and consistent across all profiles. Although these assumptions are commonly accepted in profile 

monitoring, they are violated in some manufacturing processes. In certain applications, profiles collected 

from production cycles do not have an equal length, but only share a common variation pattern, nor do the 

explanatory variables have fixed sampling points.   

This paper intends to develop algorithms for monitoring unaligned profiles with varying sampling 

points. The main contribution of this paper is twofold. First, we propose a robust dynamic time warping 

(robust DTW) algorithm for profile alignment. The robust DTW algorithm considers SPC-specific 

challenges, that is, profiles are contaminated by noises and shift signals, but can still yield robust 

alignment results. Second, we propose a penalization-based charting algorithm that gives more effective 

performance in shift detect.  

The rest of this paper is organized as follows. In Section 2, we present an illustrative example to 

demonstrate the real needs and importance of monitoring unaligned profiles. In Section 3, a framework 

for unaligned profile monitoring is presented. Then, the robust DTW algorithm for profile alignment is 

presented in Section 4, and a new profile monitoring algorithm is introduced in Section 5. In Section 6, a 

real example is shown to demonstrate the use of the monitoring procedure. Finally, we conclude this work 

with suggestions for future research in Section 7. 

 

 An illustrative example  2

To better illustrate the importance of the profile alignment and monitoring problem, we take an ingot 

growth process as an example. In an ingot growth process, a collection of procedures are carefully 

designed to convert polycrystalline silicon into monocrystalline silicon. To maintain a constant ingot 
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diameter and uniform material quality, the heating power must be perfectly coordinated to ensure a 

desirable growth environment. Because of the complex growing mechanism, the heating power exhibits a 

dynamic trend in each growth cycle. Figure 1(a) shows four sample power profiles collected from 

different growth cycles. All the profiles share a similar trend, which is governed by the physical 

mechanism behind the growth process. In the initial pulling stage, the heating power has a relatively large 

variation; the variation of heating power gradually stabilizes, while its mean increases slowly. Another 

noticeable feature of the profiles is that they have different lengths. In practice, the length of a profile is 

determined by the amount of polycrystalline silicon deposited for that production cycle. Figure 1(b) 

shows aligned heating power profiles. The lengths of all profiles are unevenly stretched or compressed to 

the same span by an alignment algorithm that will be introduced in details in a later section. 

  

Figure 1. Heating power profiles collected from the ingot growth process: (a) raw profiles and (b) 

aligned profiles 

 

In the ingot growth process, the difference in profile length is not an indication of process 

deterioration or failures. Instead, abnormal process changes are likely led to shocks or segments of mean 

shifts in profiles. To detect such shifts, we have to shrink or expand them to an equal length, with an 

equal number of sampling points. Profile alignment, also known as curve registration
12

 in biological and 

medical studies, are not yet widely studied in profile monitoring. Some existing discussion on profile 

alignment focused on curves that are expressed in appropriate functional forms. For example, Mosesova 

et al.
13

 used simple landmark registration to obtain aligned profiles for monitoring. Dai et al.
14

 studied the 

monitoring of unaligned discrete profiles, and they used the conventional dynamic time warping (DTW) 

algorithm to obtain warped profiles for monitoring. However, as the existing DTW algorithm is not 
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designed for SPC purpose, important failure signatures such as local shifts may mislead the alignment 

operation; SPC based on wrongly aligned profiles can hardly give satisfactory performance.  

 

 A framework for unaligned profile monitoring 3

Assume the thj  profile with length 
jn  is collected at time j , which has observation pairs ( , )j jx y , 

where jx  and jy are vectors of jn dimensions that represent the explanatory and response variables, 

respectively. To facilitate discussion, we formulate the unaligned profiles using the following regression 

model: 

    , 1,2, , , 1,2,ij ij ij jy g f x i n j      (1) 

where ijx  and ijy denote the values of the thi  element of jx  and jy  on the thj  profile. Under the 

assumption of continuity of a profile, 1 2 jj j n jx x x   . In most applications, ijx are evenly 

distributed; while in some other cases, like power profiles in the ingot growth process, the intervals of the 

explanatory variables are unequally distributed. Additionally, sampling positions of different profiles may 

be different, which means that ijx  for profile j  may not equal ilx in profile ,l l j .  

In the model, ij ’s represent measurement errors, which are assumed to be independent and follow a 

normal distribution with mean 0 and variance 
2

j . ( )g   is a general function that denotes the relationship 

between the explanatory variables and the response variable. ( )f   is a warping function that maps the 

explanatory variables of an unaligned profile to another scale so that the profiles become aligned. We set 

profile 0, 0 0( , )x y  with length 0n , as the reference profile to which other profiles should be aligned. Then, 

the warping function in Equation (1) is in fact 0 0( ) , 1,2, ,ij kf x x k n  . Aligning profile ( , )j jx y  to a 

reference profile means finding a series of explanatory variable values in the reference profile and linking 

them with their counterparts in jx . Details on the warping function will be introduced in the following 

section.  

To design a proper monitoring procedure for the regression model in Equation (1), profile alignment 

must first be accomplished by estimating an appropriate warping function ( )f  . One of the popular 

methods that can be used to address the above alignment problem is dynamic time warping.
14

  However, 

DTW was original proposed for general purposes. In the SPC scenario, a profile may be contaminated by 

both noises and shift signals. The existing alignment algorithms are easily misled by such signals. 
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Therefore, in this work, we propose a robust DTW algorithm first, then design improved methods to 

monitor aligned profiles.  

A framework for unaligned profile monitoring is shown in Figure 2. In the first step, historical 

profiles that are assumed to be in control but have different lengths and observational points are analyzed, 

and then a robust DTW algorithm is applied to find a baseline profile. Next, other profiles are registered 

to the baseline, so that the in-control mean and variance of the in-control process can be estimated. The 

control limit is also estimated at this stage. In the second step, the designed chart is applied to online 

profiles. When a new profile arrives, it is first aligned to the baseline profile, after which the mean vector 

of the aligned profile is estimated by the proposed penalty methods. Finally, the estimated information is 

integrated with the control chart to detect potential shifts; a decision about process status is then made. 

 

Figure 2. A framework for unaligned profile monitoring 

 

 Robust DTW for profile alignment 4

To monitor unaligned profiles, we need to align them so that an equal length and dimension are obtained. 

In this section, we first give a brief review of the existing DTW algorithm for curve registration. Then, 

taking into account the presence of possible shifts in unaligned profiles, we proposed a robust algorithm 

(robust DTW) for profile alignment. After that, a further discussion on parameter design for robust DTW 

is presented. 

 

4.1 A brief introduction of DTW 

The warping function f（） in Equation (1) can be estimated using DTW. The DTW was first introduced 

for speech recognition, and it was later widely used in fault diagnosis, pattern recognition and cassation, 

etc.
15-18

 Ramaker et al.
19

 and Kassidas et al.
20

 applied DTW for profile warping, but the authors assumed 
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that the profiles have an identical length. Jeong et al.
18

 modified the traditional DTW and proposed 

assigning weights to different points for time series classification. To solve the problem of monitoring 

dynamic profiles, Dai et al.
14

 proposed using the dynamic time warping method. However, they did not 

discuss the robustness of the alignment operation when profiles have local shifts.  

In keeping the notations introduced earlier, let ( , )ij ijx y  be the i th sampling point on profile j . 

Assume there are two profiles, jQ  and R , where jQ  is the thj profile to be aligned, 

{ ( , ), 1,2, , , 1,2, }ij ij ij jQ x y i n j   , and R  is the reference curve that jQ  will be aligned to, 

0 0 0 0{ ( , ), 1,2, , }k k kR x y k n  . DTW aims to find the mapping path by minimizing the distance of 

these two sequences.  

Let 
1 2( , , , , , )T

m hc c c cc  , be the alignment path, which is an index that stores the aligned point 

pairs from profiles jQ and R separately, while h  is the number of aligned pairs which is determined by 

the DTW algorithm automatically, and 
0 0max( , ) 1j jn n h n n    . Specifically, c defines a mapping 

between profiles jQ and R , and each element of c is defined as 

       0 0 0 0, ( , ),( , ) , 1,2, , , 1,2, ,m ij k ij ij k k jc Q R x y x y i n k n    , which represents that the m th 

aligned pair is composed of the i th sampling point on profile jQ , ijQ , and the k th sampling point on 

profile R , 0kR  , and then the warping function for point ijQ on profile jQ is 
0( )ij kf x x . Let 

   0 0, || ||m ij k ij k pd c d Q R y y    be a p -norm distance measure between the two aligned points 
ijQ  

and 0kR ; the distance of aligned points is defined as the p -norm difference of corresponding response 

variables of profiles. In practice, the Euclidian distance ( p =2) is most widely used, and we also choose 

to use it in our work. At this point, the optimal mapping path of the two profile sequences for DTW can 

be found by minimizing the sum of the distances of all alignment pairs: 

   
1

, min
h

j mm
D Q R d c


 

c
 

To obtain better alignment results, the warping algorithm is often subject to certain constraints. 

Among other things, the boundary conditions continuity and monotonicity are widely used.
21

 Dai et al.
14

 

showed that the mean of unaligned profiles should be removed before the DTW algorithm can be applied, 

as the DTW procedure is not invariant to location shifts in the profiles.  

The optimal warping path can be efficiently found using dynamic programming. More specifically, 

let cumulative distance be the total distance measured from the beginning of the profiles to current point 
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pair  0,ij kQ R  as  0,c ij kD Q R , and the distances of all alignment pairs  ,jD Q R is equal to 

 
0 0,

jc n j nD Q R . DTW computes 
0( , )c ij kD Q R as the sum of points’ distance  md c and the minimum of 

the cumulative distances of three adjacent pairs: 

               0 0 01 1 1 0 1 0
, = , +min , , , , ,c ij k ij k c k c c iji j i j k k

D Q R d Q R D Q R D Q R D Q R
    . 

Following this recurrence, the optimal path c is found by backtracking the recurring optimal nodes staring 

from final point pair  
0 0,

jn j nQ R . 

 

4.2 Robust DTW for profile alignment 

DTW is an effective algorithm that can solve the alignment problem of profiles with unequal lengths 

or uncertain sampling intervals. However, from the algorithm, we learn that points on the query profile 

are aligned to points on the reference profile one by one. That is, only a single point is considered at each 

iteration. If there is significant noise on any single point, the complete mapping path will be affected. 

However, in SPC monitoring, it is very likely that profiles are contaminated by noise signals or a segment 

of shift. Although we expect that two profiles should be aligned based on their overall trend patterns, such 

shift signals or noises inevitably affect the alignment operations locally. Figure 3 shows two profiles that 

have similar trends apart from a hump (a local shift signal) in one of them. If the traditional DTW 

algorithm is applied, as shown in Figure 3(a), the points near the shifted points are mapped incorrectly. 

Figure 3(b) shows the correct way to map these two profiles. It’s also the case for profiles have noises on 

each point. 

               

(a)                                                                                (b) 

Figure 3. DTW alignment for curves with a local shift signal: (a) alignment using the traditional DTW 

and (b) alignment using the robust DTW. Dotted: reference profile; solid: query profile. 
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To overcome the shortage of the existing DTW algorithm, we here propose a robust DTW algorithm. 

This algorithm works on a segment-by-segment basis. At each step, profile segments instead of single 

points from two profiles are compared and mapped. Even if one profile is contaminated by noises or shift 

signals at a single or even multiple points, the alignment of the two profile segments is less affected since 

the distances of a lot more points are considered each time.  

More specifically, to find the thm  alignment pair, we need to evaluate distance between the thi

point on Q  and the thk  point on R . A robust evaluation of the distance is defined as follows: 

 

   0 ( ) ( )0

0

1
, ,

,

1 ,

1

w ij k l i l j k llm p
ll

j

d Q R s y y
s

l

i l n

k l n

  

   

  

  




  (2) 

where ls  is a weighting function that weights the center the most. Here a density function of a normal 

distribution with mean 0 and variance   is chosen to describe lw , that is,    2, 0,l zs l z N  ;  and 

  determines the effective length of the profile segments. Because the total distance is evaluated as the 

weighted sum of distances of all adjacent pairs, the impact of any single or multiple points is less 

profound. If  =0, it means that we only consider the center point, and thus the robust DTW reduces to 

the traditional DTW; the algorithm evaluates distances on a point-basis again. When  >0, we expect that 

the robust DTW is less sensitive to local shifts and noises in profiles than the traditional DTW, thus can 

general more reliable alignment results for process monitoring.  

 

Figure 4. DTW alignment for profiles with noises: (a) alignment using the traditional DTW and (b) 

alignment using the robust DTW. Dotted: reference profile; solid: query profile. 
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It should be noted that even if the profile to be aligned is only noisy but has no shifts, the robust DTW 

still work effectively. Figure 4 shows the alignment of two noisy profiles (profiles contaminated by 

noises). If the traditional DTW algorithm is applied, as shown in Figure 4 (a), some points are mapped 

incorrectly, while Figure 4(b) shows that robust DTW provides better alignment performances as it is less 

sensitive to noise signals. 

 

4.3 Parameter selection for the robust DTW 

In robust DTW, the form of the weighting function is taken as the density function of a normal 

distribution. Therefore, one important parameter here is  , as it determines the spread of the weighing 

function, thus determines the effective length of segments in distance calculation.  

We here use numerical simulations to study the impact of this parameters. To make the study 

comprehensive, we choose   from a wide range of candidates 0.1,0.2, ,1,2 10{ , , } .  As 

previously mentioned, the ingot growth profiles that need to be aligned have certain common trends. To 

mimic the real profiles seen in the ingot growth process, we assume that each simulated profile has three 

stages: increasing, decreasing, and increasing again. The first two stages are represented by a cycle of a 

sinusoidal function, and the third stage is formulated by a linear function. That is, the simulated profile is 

governed by the following function: 

 

 2

sin / , 0 2 ,
1,2, , , 1,2,

2 2 2 30 /

ij ij ij

ij j

ij ij ij

k a x x
y i n j

y b x x b

  

   

    
  

     

  

where  20,ij j  . Under this assumption, the profiles have similar patterns but can be stretched or 

compressed by changing the parameters. 

To investigate the effect of  , we set 2,a 5, 5, 1k b    , with 0.2j   for the query profile 

and 0 0   for the reference profile R . Five types of failure signals are added to the query profile, each 

of which corresponds to a particular type of shift or failure in the process. Figure 5(a) shows a profile 

without any shifts. The five added shift signals are: (i) a sudden transient shift; the shift magnitude is set 

to 1,5,11ijy   at shift point 120ijx   in the third stage, as Figure 5(b) shows; (ii) sustained constant 

shifts with shift values 1,2,3ijy   after 120ijx  in the third stage, as shown in Figure 5(c); (iii) 

sustained drifts with ( 120), 0.1,0.5,1.0ij ijy k x k     after 120ijx   in the third stage, as shown in 

Figure 5(d); (iv) constant cyclical shifts with sin(( 120) / 2)ij ijy r x    , 0.5,1.0,2.0r  , 1   
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after 120ijx  in the third stage, as shown in Figure 5(e); and (v) enlarged cyclical shifts with

(( 120) /20)
sin(( 120) / 20)ijs x

ij ijy e x


 

   , 0.1,0.2,0.3s  , 1  , as shown in Figure 5(f).  

 

Figure 5. Profiles used for robust DTW alignment: (a) no shift, (b) sudden transient shifts, (c) 

sustained constant shifts, (d) sustained drift, (e) constant cyclical shifts, and (f) gradually enlarged 

cyclical shifts 

 

To facilitate the evaluation of alignment performance, the number of explanatory variables for both 

query profile Q , and reference profile R , are equal. That is, 
0jn n  holds for all profiles. ( )ijf x  

represents the aligned indices of query Q , while 0ix  represents the aligned indices of reference R . Thus, 

the correct estimation of the warping function is 
0( )ij if x x  for every i  and j . Keogh and Pazzani

22
 

used a misalignment index (MI) for performance evaluation by counting the differences between the 

correct alignment and the alignment generated by an algorithm. The MI is defined as the ratio of a 

measure of misalignment to a measure of profile length, as follows: 
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Clearly, the value of MI is small if there a perfect alignment is achieved. Figure 6 shows the MI 

values for the six profiles defined above when   varies. MI is the largest when  =0 (robust DTW 

reduces to the traditional DTW). When   increases, MI decreases slowly first, then sharply, and finally 

stabilizes at a certain level. Therefore, for this process, a feasible selection for   is within (5,9) .  

  

Figure 6. MI for different   chosen for various profile shift patterns 

 

Once the robust DTW method is developed, following the framework in Figure 2, we can align 

historical profiles to an equal length, then get a baseline profile for online comparison. The iterative 

procedure suggested by Dai et al.
14

 could be borrowed for baseline calculation, expect that the robust 

distance measure proposed above should be used.  

 

 Profile monitoring based on penalized estimation 5

In process monitoring, observed samples are always contaminated by noises. If the true values of a 

process were known, a more efficient control chart could be designed. Similarly, in aligned profile 

monitoring, observed profile readings are contaminated by noises from various sources. If the true 

position of a profile could be obtained, such information could be utilized by a control chart to help 

improving its charting performance. In this section, we first introduce a GLRT statistic for shift detection, 

then deviate a little bit and study how to estimate shift signals that is critical to the GLRT statistic. Finally, 
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we come back to the GLRT statistic, and show the complete charting statistic with penalized estimates of 

shift signals.  

 

5.1 A GLRT statistic for shift detection in profiles 

A profile can be represented by a high-dimensional vector, with each point being one element of the 

vector. Let the mean of the baseline profile be 
00 10 20 0=( , , , )T

n  μ and the covariance matrix be 0Σ , 

where 0n  represents the dimension of the vector. In online monitoring, the mean and covariance of in-

control profiles are assumed to be known. Let profiles collected at time j after alignment be

0

' ' ' '

1 2=( , , , ) , 1,2,T

j j j n jy y y j y . Here we assume that each element of 
'

jy  follows a normal 

distribution with a dynamic and unknown mean, 
0

'

0( , )j n jMNy μ Σ .  

To check whether a profile is different from the baseline, we start by examining the following 

statistical hypothesis 
0 0 1 0= vs. :j jH H μ μ μ μ： . Then, the logarithmic generalized likelihood ratio 

test (GLRT) statistic is: 

          ' ' 1 ' ' 1 '

0 0 0 0
ˆ ˆ

T T

j j j j j j j

       y y μ Σ y μ y μ Σ y μ   (3) 

where ˆ
jμ  is an estimated process mean of 

jμ for the alternative hypothesis. That is, 

     
0

' 1 '

0
ˆ arg min

j

T

j j j j j





  
μ μ

μ y μ Σ y μ  . (4) 

The null hypothesis is rejected and the alternative hypothesis is favored if 
'

1( )j c y , where 1c  is a 

threshold value.  

In Equation (3), one critical step is to estimate the profile mean 
jμ  based on the profile data 

'

jy  

collected at time j . For the traditional GLRT, the default estimates are 
'ˆ

j jμ y  , and thus, 

' ' 1 '

0 0 0( ) ( ) ( )T

j j j

   y y μ Σ y μ . The corresponding charting statistic reduces to the traditional 

Hotelling’s 
2T  control chart. 

However, as 
'

jy  contains both useful and noise signals, 
'ˆ

j jμ y  is obviously an inaccurate estimate. 

In the next section, we investigate different methods for profile mean estimation. For simplify of 

expressions, we assume 0 μ 0 . That is, the process mean is assumed to be zero when the process is in-

control. Although the following derivations are presented under this assumption, it is not difficulty to 

extend the results to processes with a general in-control mean vector.  
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5.2 Methods for profile mean estimation 

Fan
23

 proposed a local linear regression (LLR) method for eliminating noise information with a kernel 

function. Zou et al.
24

 applied this nonparametric regression approach to estimate the profile mean 

estimation ˆ
jμ ,

'ˆ
j jμ Wy , in which W  is a 0 0n n  smoothing matrix. The LLR method estimates μ̂  

with a linear regression using a point’s neighbors. Therefore, the resulting estimates are relatively 

smoother compared to the raw readings.  

Tibshirani et al.
25

 proposed a Fused LASSO (FLASSO) algorithm for regression estimation. The 

FLASSO has two penalty terms, the LASSO penalty and the fusion penalty. The LASSO penalty has the 

same effect as the traditional LASSO, which shrinks some elements to zero; the fusion penalty has the 

effect of forcing adjacent coefficients to be equal, thereby forming a spatially smoothing solution. The 

joint use of the FLASSO penalties helps generate smoothed solutions with sparsity, which is exactly the 

local shift feature we expect to see in profile mean estimation. Therefore, we introduce the use of 

FLASSO in profile mean estimation as follows: 

       0 0' 1 '

0 1 2 11 2
ˆ =arg min

j

T n n

j j j j j ij ij i ji i
    

 
      

μ

μ y μ y μ  , (5) 

where 1  and 2  are penalty coefficients and
 1

| |ij i j
 


 is the absolute value of the difference 

between the thi  element and its neighboring element to the left on the profile. The first constraint 

0

1 1

n

iji
 

 encourages sparsity in the coefficients, helps generate sparsity in mean estimates by setting 

small elements to exactly zero when the in-control mean vector is assumed to be 0. Existing works have 

been seen using the LASSO penalty for mean estimation 
26, 27

; the second constraint
 

0

2 12

n

ij i ji
  




encourages sparsity in their differences (i.e., flatness of profile mean), and this Fused estimate (FE) can 

also be used for mean estimation. Overall, the mean estimate obtained by Equation (5) is expected to 

preserve useful shift information in a profile, while removing noise that may harm charting performance. 

The equation can be solved by a coordinate-wise optimization algorithm
28

, a dynamic programming 

algorithm
29

, or an efficient Fused LASSO algorithm
30

.   

 

The above mean estimation methods, LLR, LASSO, FLASSO and FE, emphasize different aspects of 

the solution, giving different results. LLR pursues a smoothing profile using weighted neighbors in a 

kernel function. LASSO shrinks solutions to zero to generate sparsity without any structures. FE attempts 

to obtain a smoothed profile estimate but is still contaminated by noise. FLASSO achieves sparsity in 

elements and their differences, but has the risk of being misled by noise. Figure 7 shows the estimations 
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of the four algorithms. In Figure 7, the dots represents the simulated data of 
'

jy , which are the same in 

these four algorithms. All of the true profile mean represented by dashed line has a same jump at the 120
th
 

point, while the estimated means shown in solid lines are apparently different from each other. LLR gives 

a smoothed estimate that is different from the true value at most points. LASSO give a solution that has 

many zeros, but occasional spikes indicate that this method is easily affected by a large amount of noise. 

FLASSO gives a sparse estimate, but a bias exists for most of the points. Finally, FE gives a smoothed 

and sparse estimate, but the shifted signal is not captured well.  

    

  

Figure 7. Profile mean estimation using different methods: (a) LLR, (b) LASSO, (c) FLASSO, and (d) 

FE 
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To tackle the drawback of the above algorithms, we incorporate the smoothing capability of LLR and 

the selection power of FLASSO, and propose a new way to retrieve mean estimates. The proposed 

method adds the Fused LASSO penalty into the LLR solution, denoted as FLASSO-LLR, which is given 

by:  

 

   

  0 0

' 1 '

0

1 2 11 2

ˆ = arg min

,

j

T

j j j j j

n n

ij ij i ji i
    



 

  

   

μ

μ Wy μ Wy μ

  (6) 

where W  is a kernel smoothing function; its bandwidth is given by 

  0

1 2
2

1 5

0 01
2 1/

n

E ij ji
h n x x n


   , which is a popular choice in the literature 

24,31,32
. In Equation (6), 

the penality is applied based on LLR-smoothed observations. Compared to Equations (5), each smoothed 

observation in Equation (6) is calcualted from a set of neighbours. Therefore, we expected that the 

estimates obtained from Equation (6) is less sensitive to noises, and thus facilities more effective 

monitoring of process changes. If only the Fusion penalty is used above, we name this method FE-LLR.  

 

Figure 8 shows the performances of FLASSO-LLR and FE-LLR when applied to the simulated 

profile shown in Figure 7. Comparatively, FLASSO-LLR gives an estimate that is close to the true mean, 

while FE-LLR gives a smoother estimate than LLR.  

  

Figure 8. Profile mean estimation by different methods: (a) FLASSO-LLR and (b) FE-LLR 
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5.3 Profile monitoring based on penalized estimates 

The mean profiles obtained by solving Equations (5) give estimates of true process status. In this section, 

we propose a charting scheme based on the estimates and use this information to boost charting 

performance.  

Once a mean estimate, ˆ
jμ , is obtained by either one of the estimation methods, the process can be 

monitored by plugging the estimate into Equation (3), which becomes:  

   ' ' 1 1 1

0 0 0 0 0 0
ˆ ˆ ˆ2 T T T

j j j j j

      y y Σ μ μ μ Σ μ μ Σ μ . 

Then, an equally effective control chart based on penalized likelihood ratio is achieved: 

    ' ' 1 1

0 0 0 2
ˆ ˆ ˆ2 T T

j j j j j c     y y Σ μ μ μ Σ μ   (7) 

where 2c  is a proper control limit determined by a predefined false alarm rate. 

Before the monitoring procedure can be used, the panelized parameters 1  and 2  should be properly 

chosen as they determine the sparsity and smoothness of the estimated profile mean, respectively. We 

follow the method used by Zou et al.
27

 and Wang et al.
33

, in which a sequence of turning points of penalty 

parameters are used to obtain estimates, and a normalized statistic is used for monitoring. Following this 

idea, we set 
1{ , 1,2, , }p i i p   ,  and 

2{ , 1,2, , }q k k q    be a set of candidates for 1  and 

2 , where p  and q  are two pre-specified constants. Thus, we define the charting statistic as follows: 

 
        

    
1 2 1 2

1 2

' '

, ,

1, , '
1, ,

,

max
i k i k

i k

j j

i p
k q

j

E
T

Var

   

 




  




y y

y
 , (8) 

where, 
 1 2

'

,
( ( ))

i k
jE

 
 y  and 

 1 2

'

,
( ( ))

i k
jVar

 
 y  are the mean and variance, respectively, of statistic 

 1 2

'

,
( )

i k
j 

 y  for a specific choice of  1 2,  , which are approximated via situation using the empirical 

expectation and variance of    
1 2

'

,i k
j 

 y by setting 
'

jy follows multivariate normal distribution with 

0 =0μ and 
00 = nΣ I . Similarly, profile means estimated by Equation (5) for FLASSO or Equation (6) for 

FLASSO-LLR could be used. This control chart triggers a signal when T L , where L is a properly 

chosen control limit. Similarly, for the FE chart, and also the FE-LLR chart, the charting statistics and 

control limits can be designed and determined accordingly.   
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5.4 Charting performance comparison 

We now use simulations to study the performance of different charts discussed above. We assume all 

of the aligned profiles have a length of 160, 0 160n  . Without loss of generality, we assume that all in-

control aligned profiles follow the standard normal distribution,  
0

'

0 0 ,nMNy μ I , where 

00 10 20 0( , , , )T

n  μ . In Phase II online monitoring, the aligned profile '

jy  follows a multivariate 

normal distribution with the same covariance structure but an unknown mean 

01 2=( , , , )T

j j j ij n j   μ , 
0

' ( , )j n jMNy μ I .  

Following the framework in Figure 2, we first generate historical profiles and obtain a baseline. Next, 

all profiles to be monitored are standardized with respect to the baseline by calculating  

  '' '

0 0 0= / , 1,2, , , 1,2,ij ij i iy y i n j     . 

When the process is in-control, the standardized profile, 
0

'' '' '' ''

1 2( , , , )T

j j j n jy y yy , follows the standard 

normal distribution,  
0

'' ,j nMNy 0 I . If the process is out-of-control, then ''

jy  follows the shifted 

normal distribution, 
0

''

0( , )j n jMN y μ μ I , and the profile mean shift is 
0j μ μ .   

To mimic different shift scenarios, we consider three types of shifts for the profile mean that are 

frequently seen in the ingot growth process: a sustained shift, a sustained drift, and a cyclical shift 

(marked as (c)-(f) in Figure 5). As we have mentioned earlier, if a shift occurs in a profile, it is likely to 

affect segment of the profile mean vector. Hence, we assume an abnormal profile shifts only occurs 

starting from step 
 . Some shift types also have varying parameter settings, thus creating six shift 

patterns, OC1-OC6, as shown in Table 1. For the sustained shift, we consider different shift sizes 
 s 

(OC1) and different shift positions 
 s (OC2); for the sustained drift (OC3), the shift occurs at a fixed 

position but with different gradients k
s; and for the cyclical shift, we consider shifts with different sizes 

r s (OC4) and frequencies 
 s (OC5), but the shift amplitude r remains a constant. In practice, a 

cyclical shift may be amplified due to built-in feedback control mechanisms. We also observe the case 

where a cyclical shift’s amplitude increases within the product cycle, which is described by an 

exponential function with parameter s  (OC6). The six out-of-control patterns are added to simulated 

profiles, and the resulting profiles are monitored by different charts.  

The sparsity penalty 1  and the fusion penalty 2  are adaptively chosen to maximize the charting 

statistic. Based on our experience and values of the simulated data, we define the parameter spaces 

1 2,   for the penalty parameters in Table 2. As FLASSO-LLR and FE-LLR are the penalization-based 



 

18 

 

methods based on smoothing, the smoothing estimation has decreased processes’ noises, which leads to 

the penalty parameters for FLASSO-LLR and FE-LLR much smaller than the methods without smoothing 

step when to estimation the true process mean. 

 

 

 

 

 

Table 1. Types of failures for profile mean 

 

Table 2. Parameter spaces for penalty coefficients 

 1  2  p  q  

FLASSO  0.2,0.4,0.6, ,2.0   0.5,1.0,1.5, ,5.0  10 10 

FLASSO-

LLR 
 0.02,0.04,0.06, ,0.20   0.05,0.10,0.15, ,0.50  10 10 

FE —  0.1,0.4,0.7, ,5.8  — 20 

FE-LLR —  0.01,0.04,0.07, ,0.58  — 20 

 

For comparison, we choose the nonparametric regression method based on LLR proposed by 
34

 as a 

benchmark. ARL is widely used in the literature for charting performance comparison. In the following 

example, the in-control ARLs of all control charts are set to 200, and the corresponding out-of-control 

ARLs are calculated and compared. Each ARL is obtained using 10,000 replicates.  

 

Shift pattern Mean shift Fixed parameters Shift element 

OC1 ,ij ij i        120   
  

OC2 ,ij ij i        0.5   
  

OC3    0/ ,ij ij k i n i             120   k
 

OC4  sin 40 ,ij ij r i i            
 80; 2     r  

OC5  sin 40 ,ij ij r i i            
 0.7; 80r    

  

OC6 

   sin 40 ,
s i

ij ij r e i

i

 

  



   




    


 

0.15 ; 80;

2

r 







 



 

s  
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5.5 ARL comparison 

Table 3 shows the ARL performance of all competing charts under different types of failure patterns. 

For each shift scenario, the smallest ARL is shown in bold. A number of observations can be made from 

examining the results, as follows: 

1. A general comparison between LLR and other penalization-based chart reveals that at least one 

penalization-based chart outperforms LLR for all of the shift patterns we considered (OC1-OC6). This 

shows that adding a penalty to the GLR statistic or LLR-based GLR statistic is effective in identifying 

shifts in a profile. 

Table 3. ARLs comparison  

Shift 

patterns 

Shift 

values 
LLR 

Control charts based on penalized likelihood ratio 

FLASSO FE FLASSO-LLR FE-LLR 

- - 200 200 201 199 200 

OC1  0.1 128 165 142 125 131 

0.2 50.7 90.4 61.4 48.1 51.8 

0.3 18.6 34.6 22.6 16.8 18.4 

0.4 7.54 12.6 8.59 6.58 7.21 

0.5 3.51 5.23 3.93 3.11 3.48 

0.6 2.06 2.55 2.19 1.88 2.00 

0.7 1.42 1.61 1.47 1.33 1.41 

0.8 1.16 1.22 1.18 1.11 1.15 

0.9 1.05 1.07 1.05 1.03 1.04 

1.0 1.01 1.02 1.01 1.01 1.01 

OC2 10 1.01 1.28 1.03 1.02 1.01 
20 1.02 1.35 1.04 1.02 1.02 
30 1.04 1.42 1.06 1.04 1.03 
40 1.06 1.52 1.09 1.05 1.05 
50 1.10 1.62 1.14 1.08 1.08 
60 1.14 1.78 1.20 1.13 1.14 

70 1.23 1.94 1.30 1.20 1.22 

80 1.35 2.18 1.45 1.31 1.33 

90 1.55 2.54 1.69 1.46 1.52 

100 1.88 3.00 2.06 1.75 1.81 

110 2.46 3.87 2.72 2.23 2.38 

120 3.60 5.09 3.92 3.14 3.50 

130 5.95 7.72 6.63 5.13 5.85 

140 12.4 13.0 14.2 9.07 11.7 

150 38.4 29.9 47.0 25.3 37.0 

OC3 0.1 168 182 178 161 168 

0.2 110 130 121 94.6 106 

0.3 61.0 77.4 71.0 50.5 58.9 

0.4 32.7 42.3 39.3 25.3 32.3 

0.5 18.0 21.9 21.7 13.3 16.9 

0.6 9.84 12.0 12.1 7.43 9.59 

0.7 6.10 6.78 6.97 4.56 5.68 
0.8 3.87 4.21 4.50 3.05 3.76 

0.9 2.64 2.82 3.02 2.17 2.59 
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Shift 

patterns 

Shift 

values 
LLR 

Control charts based on penalized likelihood ratio 

FLASSO FE FLASSO-LLR FE-LLR 

1.0 1.98 2.05 2.18 1.67 1.94 

1.1 1.54 1.61 1.67 1.38 1.51 

1.2 1.33 1.33 1.39 1.21 1.31 

1.3 1.17 1.18 1.22 1.10 1.16 

1.4 1.09 1.09 1.11 1.05 1.08 

1.5 1.04 1.04 1.06 1.02 1.04 

OC4 0.1 178 185 25.9 181 181 

0.2 125 147 18.0 133 130 

0.3 78.8 101 10.9 86.0 81.0 

0.4 44.2 58.8 6.13 51.2 45.9 

0.5 23.6 31.1 3.56 30.2 24.8 

0.6 12.8 16.0 2.20 17.6 13.7 

0.7 6.98 8.37 1.58 10.2 7.59 

0.8 4.20 4.53 1.24 6.25 4.49 

0.9 2.74 2.68 1.09 3.96 2.89 

1.0 1.93 1.79 1.03 2.69 1.99 

1.1 1.47 1.36 1.01 1.92 1.53 

1.2 1.23 1.14 1.00 1.48 1.26 

1.3 1.10 1.05 1.00 1.25 1.12 

1.4 1.04 1.01 1.00 1.12 1.05 

1.5 1.01 1.00 1.00 1.05 1.02 

OC5 0.5 1.36 2.12 1.19 1.34 1.34 

1.0 1.49 3.42 1.23 1.72 1.51 

1.5 2.13 5.62 1.39 3.06 2.23 

2.0 7.18 8.42 1.57 10.2 7.50 

2.5 40.1 11.5 1.76 22.2 31.8 

3.0 99.5 15.2 1.99 34.6 64.1 

3.5 106 18.7 2.21 47.9 76.2 

4.0 84.8 23.2 2.45 61.4 76.9 

4.5 75.7 27.9 2.67 73.2 78.6 

5.0 86.0 32.1 2.92 85.2 90.0 

5.5 115 35.7 3.16 99.4 115 

OC6 0.02 142 159 20.7 141 143 

 0.04 124 142 18.3 125 123 

 0.06 103 120 15.5 98.4 99.4 

 0.08 75.7 90.7 12.3 71.7 74.3 

 0.10 52.9 59.5 9.18 47.1 51.7 

 0.12 31.2 33.8 6.46 27.5 30.5 

 0.14 16.8 15.9 4.10 14.4 16.5 

 0.16 8.20 6.91 2.53 6.88 7.83 

 0.18 3.80 3.10 1.62 3.31 3.60 

 0.20 1.87 1.58 1.18 1.72 1.81 

 0.22 1.20 1.09 1.02 1.15 1.18 

 0.24 1.01 1.00 1.00 1.01 1.01 

 

2. As the shift value increases, ARL decreases except for shift scenarios OC2 and OC5. For OC2, the 

increase in ARL as the shift element   increases can be explained by the shift dimension of process 
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means. As the shift position   increases, one observes shorter shift duration in the mean vector, which 

leads to a lower probability of a false signal when the data are abnormal. Similarly,   controls the 

frequency of a cyclical signal inflating the IC profile mean for OC5. A larger  means there are more 

periods in the cyclical shift adding to the IC profile mean vector, which obtained a severer changes 

between adjacent mean’s elements. The drastic undulation might lose accuracy of profile mean estimation, 

which makes ARL grow with  . 

3. When there is a sustained mean shift (OC1 and OC2) or a sustained drift (OC3), FLASSO-LLR 

performs the best in most cases, and FE-LLR perform quite closely to FLASSO-LLR. FLASSO and FE 

are relative slow in these cases, with FE showing a slightly better performance. This shows that applying 

penalization to the smoothed profile obtained from LLR is more likely to extract these shift patterns; the 

LLR smoothing is effective in removing noises and making the sustained mean shift or drift stand out.  

4. When a cyclical shift with constant amplitude (OC4, OC5) or increasing amplitude (OC6) occurs, FE 

performs the best, and it has obvious superiority in all of these cases because of its efficient detection of 

shifts. Simulation results also suggest that FE control chart is quite robust even when amplitude or 

frequency of cyclical shift is unspecified. Performance of FLASSO differs with the values of shifts. 

FLASSO performs closely to FE with large value of cyclical shift, while the LLR-based method has no 

obvious superiority in most cases. When a process with a large cyclical shift is being monitored, applying 

LLR to profiles has the effect of smoothing both noise and signals, thus weakening the real cyclical signal. 

Therefore, in these cases, FE and FLASSO perform better. When the process undergoes a cyclical shift 

with a small value, FLASSO and LLR have no competitive power compared with FE. This is because the 

cyclical information is more important when the shift amplitude is small; the effects of FLASSO and LLR 

in removing noise is less prominent in such cases.  

In summary, most penalization-based charts perform better than the LLR chart. This shows that the 

suggested penalization is effective in removing noise and screening out useful shift signals for monitoring. 

Among the penalized charts, the FLASSO-LLR chart best suits the cases with mean shift or drift (or 

cyclical shifts with relatively large amplitude), while FE best suits the cases in which cyclical features 

dominate.  

 

 A real example 6

In this section, we apply the proposed framework for unaligned profile monitoring to the ingot growth 

process and monitor heating power profiles. A heating power profile is formed by retrieving the power 
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reading with a fixed time interval within a long production cycle. Several samples of these profiles are 

shown in Figure 1.   

To build a baseline, 20 historical profiles with different time spans that are judged by engineers as in 

control are aligned using robust DTW first; the baseline profile is then computed after the reference 

profile is determined and all other profiles are aligned to the reference. The parameter spaces 1 2,    for 

the penalization-based charts are set according to Table 2. The upper control limits (UCLs) of the charts 

are calculated by setting the false alarm rate to 0.005.  

We then pick another 20 profiles for online monitoring.  All profiles are aligned to the baseline using 

robust DTW. These aligned profiles are plotted in FLASSO, FE, FLASSO-LLR, FE-LLR and LLR charts. 

As our results have shown that FLASSO-LLR and FE-LLR have exactly the same alarm signals for all 

profiles, we here use one figure to represent both charts to save space. The running states of the charts are 

shown in Figure 9. 

 

 

Figure 9. Phase II control charts for 20 profiles: (a) FLASSO, (b) FE, (c) FLASSO-LLR and FE-LLR, 

and (d) LLR.  

 

As seen in Figure 9, these five control charts give similar monitoring signals for most of the profiles. 

All charts indicate that samples 1, 4-7, 9-17 and 20, are in-control, while samples 19 is out-of-control. 

However, profiles 2, 3, 8 and 18 are judged differently. For example, FLASSO and FE report that profile 

8 is abnormal, while the other three charts related to LLR report the opposite situation. For demonstration 
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purpose, Figure 10(a) compares the profile with the baseline, and Figure 10(b) shows the alignment of the 

profile to the baseline. The mean estimates provided by all tested methods are shown in Figure 11. Profile 

8 appears to fluctuate strongly starting at step 250; cyclical shifts are observed from that point on. When 

applying different methods to estimate the profile mean, the cyclical signals are best preserved by FE, as 

shown in Figure 11 (b). FLASSO in Figure 11 (a) also preserves certain shift signals. However, LLR 

makes the signal smooth by removing both noise and useful cyclical shift signals, and the penalization 

after LLR cannot further recover the cyclical shift information. Therefore, in this case, FE and FLSSO 

perform better. This result is consistent with the extensive study described in the previous section.  

  

Figure 10. Details of profile 8: (a) profile curve and (b) profile alignment by robust DTW 

 

 Conclusions and further research 7

This article provides a framework for monitoring unaligned profiles based on robust DTW and penalized 

likelihood estimation. In the proposed procedure, a baseline profile is first calculated from aligned in-

control profiles. Then, a new profile to be monitored is aligned to this baseline, and the true mean of the 

aligned profile is estimated using several penalization-based methods.  

Once the profile alignment based on robust DTW has been completed, control charts are then derived 

from the likelihood-ratio test by taking the estimated mean into consideration. We compare the proposed 

penalization-based charts with a traditional nonparametric regression chart via extensive simulation 

studies and a real example. The results show that penalization-based charts generally have superior 

performance. More specifically, the FLASSO-LLR chart performs the best in most traditional cases. FE 

chart is the best in cyclical situation which is commonly encountered in feed-back systems, and its 

performance is not much worse than FLASSO-LLR in other cases.  
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It is worth noting that the penalization-based charts have an additional merit. Whenever an out-of-

control signal is triggered, the estimated mean provides direct clues for diagnosis. Thus, the use of such 

penalized charts is especially appealing in such applications.  

 

 

  

Figure 11. Mean estimation of aligned profile 8 by different methods: (a) FLASSO, (b) FE, (c) 

FLASSO-LLR and FE-LLR, and (d) LLR 
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