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Abstract

A manufacturing system with both quantitative and qualitative (QQ) quality re-

sponses (as a QQ system) is widely encountered in many cases. For example, in a

lapping process of the semiconductor manufacturing, the quality of wafer’s geometri-

cal characteristics is often measured by the total thickness variation as a quantitative

response and the conformity of site total indicator reading as a binary qualitative re-

sponse. The QQ responses are closely associated with each other in a QQ system, but

current methodologies often model the two types of quality responses separately. This

paper presents a novel modeling approach, called “QQ models”, to jointly model the

QQ responses through a constrained likelihood estimation. The QQ models can jointly

select significant predictors by incorporating inherent features of QQ systems, leading

to accurate variable selection and prediction. Both simulation studies and a case study

in a lapping process are used to evaluate the performance of the proposed method.

Keywords: Data fusion; Model selection; Nonnegative garrote; Quantitative and quali-

tative quality control.

1 Introduction

In manufacturing systems, both quantitative and qualitative (QQ) quality responses are of-

ten used for quality control. We call such a system “a QQ system”. QQ systems are widely
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encountered in various manufacturing processes. For example, in a lapping process of a semi-

conductor manufacturing, the wafers are lapped to improve the thickness uniformities and

surface finish as shown in Figure 1 (Ning et al., 2012). The total thickness variation (TTV)

is a quantitative quality response to characterize the range of the wafer thickness. The con-

formity of site total indicator readings (STIR) is a qualitative response with binary output,

which is used to indicate whether the STIR is larger than the tolerance or not. The STIR is

the span of deviation readings of the front surface in a pre-defined site, which represents the

flatness of wafers. The detailed definitions of TTV and STIR can be found from the semicon-

ductor manufacturing industry (O’Mara et al., 1990). The TTV and the conformity of STIR

are two key measurements for the quality of wafer geometrical characteristics. Both of them

are affected by the same set of process variables in the lapping manufacturing, such as pres-

sure, rotation speed and lapping time (Marinescu et al., 2007). Common root causes of QQ

responses need to be identified for variation reduction and quality improvement. However,

the association between the two variables is not clear from engineering domain knowledge.

Therefore, joint models of QQ responses are needed for quality-process modeling in the

lapping process. For another example, in a solar cell lamination process, solar cells are

grouped and laminated to panels. The panels may have both power loss and solar cell

cracks (Pilla et al., 2002; Paggi et al., 2013). The quality of the process often considers the

power loss as a quantitative response and uses a binary response to indicate if the panel has

cracked solar cells after the lamination. For quality improvement of solar cells, it is natural

to consider a joint modeling of the power loss and the crack of the solar cells.

In manufacturing systems, the quantitative quality variables are widely used for quality

control. Meanwhile, the qualitative quality variables also exist because of heuristic judgment

or the limitation of sensor measurements. For example, the quantitative quality variables

cannot be accurately measured in real time due to sensor limitations. Instead, some qualita-

tive quality response variables are relatively easy to collect for facilitating the real time data

collection. For the lapping process in Figure 1, the sensor is only capable to indicate whether

the STIR is within the tolerance or not, which results in a qualitative quality measurement.

With the qualitative quality measurement available, modeling such responses with respect to
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Figure 1: An Illustration of A Lapping Process with QQ Responses (Redrawn from Ning et

al., 2012, and Zhao et al., 2011 with Authors’ Permission).

the corresponding predictor variables will be very useful because it can clearly provide useful

information on whether the manufacturing is conforming or not (e.g., a binary indicator for

a failed manufacturing is clearly non-conforming). Such information will be reflected in the

variable selection in our proposed methods, which will be discussed later.

Although both QQ quality responses exist in a manufacturing system, current methods

often focus on developing quality-process models separately for the two types of quality re-

sponses. For quantitative quality variables, statistical models and engineering models are

widely used to model the quality-process relationship based on observational data or design

of experimental data (Fong and Lawless, 1998; Shi, 2006; Wu and Hamada, 2009; Jin and

Shi, 2012). Quality control are performed based on these models, such as process monitoring

(Hawkins, 1991, 1993; Woodall, 2000, 2007; Montgomery, 2001; Qiu, 2014), diagnosis (Ap-

ley and Shi, 1998; Zhou et al., 2003; Shi, 2006), and control (Joseph, 2003; Jin and Ding,

2004; Shi, 2006; Jin and Shi, 2012). Modeling and quality control methods for qualitative

quality variables are also proposed, such as in the area of design of experiments, statistical

process control and Run-to-Run control for categorical variables (May, et al., 1991; Spanos

and Chen, 1997; Wang and Tsung, 2007; Lin and Wang, 2011). Qiu (2014) provides a com-
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prehensive summary on the recent development in statistical process control. In general, the

above modeling and quality control methods do not account for the association between the

two types of quality responses. In the literature of biometrical study, Fitzmaurice and Laird

(1997) investigated a joint modeling for the association of QQ responses. In their work,

a conditional model of quantitative response is considered conditioned on the qualitative

response, leading to marginal regression models. However, the marginal regression models

may not be useful for quality control in the manufacturing systems, since they may not pro-

vide an accurate prediction of the quality responses. In the literature of process monitoring,

Qiu (2008) suggested monitoring the mixed responses based on categorizing the quantitative

responses. Thus the monitoring can be carried out based on the joint distribution of the

categorized responses. It is possible to apply similar strategies to model the QQ responses

without imposing the normality assumption. In manufacturing systems, it often requires to

model the quantitative responses directly for quality control purpose, as the lapping process

discussed earlier. Recently, mixed graphical models (Chen et al., 2014; Yang et al., 2014)

have been proposed to study the general association of QQ responses. They mainly focus

on the correlation or partial correlation of the responses, rather than the exact dependency

of the QQ responses.

In this paper, we propose a new joint modeling framework, called “QQ models”, for

both QQ quality responses in a QQ system. We focus on the qualitative response with

binary output, though it is likely to accommodate the multi-level qualitative response as

discussed in Section 6. We adopt a logistic regression model for the qualitative response.

For the quantitative response, we consider the linear regression models conditioned on the

qualitative response. To address the association of the QQ responses, we consider that the

conditional linear regression models are different based on different values of the binary

output. The proposed method enables a more direct and accurate prediction of the quality

responses, rather than a prediction of the expectation of the quantitative response. Note that

the prediction for the qualitative response is usually very informative in the manufacturing

system. We will first construct the prediction of qualitative response, then predict the

quantitative response conditioned on the estimated qualitative response. Recall the lapping

4



process example, the QQ responses of TTV and STIR indicator are jointly determined by the

lapping process variables and the quality covariates before lapping. When the STIR indicator

is zero (i.e., STIR satisfies the tolerance), the lapping process is likely to be conforming.

Thus, the lapping process is effective to reduce TTV, and the predictors related to process

conditions may be more important to affect the TTV than the quality covariates before

lapping. If the STIR indicator is one (i.e., STIR is too large to satisfy the tolerance), then

the lapping operations may not be conforming. Thus, the quality covariates before lapping

become important to affect the TTV. Therefore, the coefficients in the conditional regression

models for TTV may vary depending on the values of the STIR indicator. It is beneficial

to consider different conditional regression models for quantitative response under different

values of the qualitative response, reflecting the intrinsic heterogeneity of the underlying

models in the QQ system. This engineering perception is successfully validated by the

results of the case study in Section 5.

Moreover, the proposed QQ models adopt a joint likelihood approach for parameter es-

timation and use the nonnegative garrote approach (Breiman, 1995) for efficient variable

selection. The nonnegative garrote approach accommodates the association of significant

predictors among QQ models through flexible constraints. The proposed QQ models intend

to encourage that the significant variables in the logistic regression model are kept as sig-

nificant in at least one of the conditional linear regression models. It is because that the

significant variables from modeling the qualitative response are expected to contribute an

important role for modeling other quantitative quality responses. For example, in manufac-

turing scale-up, modeling the binary response whether the manufacturing is conforming or

not will provide useful information. In this model, a significant variable should be important

for quality control in general, and thus should also be kept as a significant variable for other

quantitative quality responses. To address the computational consideration of parameter

estimation, we also develop a fast computation algorithm by iteratively approximating the

objective function using quadratic approximations.

The rest part of the paper is organized as follows. In Section 2, we detail the proposed

QQ models for jointly modeling both types of responses. In Section 3, we develop an efficient
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algorithm for fast computation. In Section 4, simulation studies are conducted to examine

the effectiveness in prediction and variable selection of the proposed QQ models. In Section

5, the proposed QQ models are applied to the lapping process as a case study. Finally, we

draw the conclusion and discuss the future work in Section 6.

2 The Proposed QQ Models

We start with one quantitative response y and one qualitative response z with binary output,

though it is possible to extend the models for multiple responses, as discussed in Section 6.

Let us denote the observed data are (xi, yi, zi), i = 1, . . . , n, where yi ∈ R and zi ∈ {0, 1}.

Here the predictor vector x = (x1, . . . , xp)
′ contains p predictors, which can be process

variables or initial quality covariates. To jointly model the QQ responses y and z given

x, we follow a joint probability density function f(y, z|x) = f(y|z,x)f(z|x), where f(·)

denotes a general density function. The conditional model on y|z is considered to be linear

regressions, while the model of z follows a logistic regression. Specifically, we propose a joint

modeling of y and z as

z|x =

 1, w.p. p(x)

0, w.p. 1− p(x)
with p(x) =

exp(x′η)

1 + exp(x′η)
, (2.1)

where η = (η1, . . . , ηp)
′ is a vector of parameter coefficients, and

y|z,x ∼ N(zx′β(1) + (1− z)x′β(2), σ2), (2.2)

where β(m) = (β
(m)
1 , . . . , β

(m)
p )′,m = 1, 2. The above proposed model indicates that y|z =

1,x ∼ N(x′β(1), σ2) and y|z = 0,x ∼ N(x′β(2), σ2). We assume the same variances for

the two conditional distributions of y|z = 1,x and y|z = 0,x. It means that the difference

between two conditional distributions are mainly driven by their mean functions. If the two

conditional distributions have different variances, one can easily have two different variance

parameters, which will not change the nature of the model formulation. Recall that the

relationship between the quantitative response y and its predictors depends on the output

of qualitative response z. To accommodate this consideration, the proposed method incor-

porates two conditional linear regression models for y|z = 1,x and y|z = 0,x. If these two
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linear models are the same, i.e., β(1) = β(2), then the quantitative response y and the quali-

tative response z are independent. In this situation, one can model the quantitative response

y in regardless of the qualitative response z. Alternatively, it is important to take accounts

of the effects of the qualitative response z when modeling the quantitative response y. Note

that the proposed models in (2.1) and (2.2) provide a joint modeling of y|z,x and z|x. Now

we can also derive the conditional model on z|y,x. The probability of z conditioned on y

can be expressed as P (z = 1|y,x) = f(y|z = 1,x)P (z = 1,x)/f(y,x). Thus, we have

P (z = 1|y,x) =
exp(

(y−x′β(1)
)2

−2σ2 ) exp(x′η)

exp(
(y−x′β

(1)
)2

−2σ2 ) exp(x′η) + exp(
(y−x′β(2)

)2

−2σ2 )

. (2.3)

It implies that the distribution z|y becomes

z|y,x =

 1, w.p. py(x)

0, w.p. 1− py(x)
with py(x) =

exp(x′η)

h(y,x) + exp(x′η)
, (2.4)

where h(y,x) = exp((y−x′β(2))2)/ exp((y−x′β(1))2). Therefore, the proposed method can

provide both conditional models of y|z,x and z|y,x, upon which is more flexible for the

manufacturing system.

To estimate the parameters in the proposed models, we consider the joint likelihood

estimation approach, which enables the parameter estimation to borrow strength from two

models of QQ responses. The log-likelihood function is

l(η,β(1),β(2)) = log

{
n∏
i=1

f(zi)f(yi|zi)

}
= log

{
n∏
i=1

f(zi)

}
+ log

{
n∏
i=1

f(yi|zi)

}

= log

{
n∏
i=1

[
p(xi)

zi(1− p(xi))1−zi
]}

(2.5)

+ log

{
n∏
i=1

[
(σ2)−1/2 exp(

(yi − x
′
iβ

(1))2

−2σ2
)
]zi[(σ2)−1/2 exp(

(yi − x
′
iβ

(2))2

−2σ2
)
]1−zi}

up to some constant independent of parameters. Now we can estimate the parameters by

minimizing the negative log-likelihood function upon some constraints for pursing sparse

model structures. A sparse model structure only contains a few significant variables in

the model, which is often called as variable selection (Miller, 2002; Hastie et al., 2009).
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It aims to achieve a parsimonious model with meaningful interpretation. Specifically, we

consider the nonnegative garrote approach to pursue a sparse model for both models of QQ

responses. The nonnegative garrote approach is originally introduced by Breiman (1995)

for linear models. Several researchers (Yuan and Lin, 2007; Xiong, 2012) have further

developed the theoretical properties of nonnegative garrote approach. This approach is also

used in other statistical models, such as logistic regressions (Makalic and Schmidt, 2011)

and additive models (Cantoni et al., 2011). In the nonnegative garrote approach, the key

idea is to re-parameterize the parameter coefficients such that flexible constraints can be

imposed to pursue a parsimonious model. Let β
(1)
k = θ

(1)
k β̃

(1)
k , β

(2)
k = θ

(2)
k β̃

(2)
k , and ηk = τkη̃k,

where β̃
(1)
k , β̃

(2)
k , and η̃k are some initial estimations of the model parameters, such as least

squares estimation or marginal maximum likelihood estimation (MLE). The constraints of

this optimization problem should encourage the sparsity of the QQ models, and reflect the

engineering perception. Thus, we consider estimating the parameters through a constrained

optimization problem as follows.

min − 2l(η,β(1),β(2))

s.t. β
(1)
k = θ

(1)
k β̃

(1)
k , β

(2)
k = θ

(2)
k β̃

(2)
k , ηk = τkη̃k;

θ
(1)
k + θ

(2)
k + τk ≤ tk, k = 1, . . . , p;

τk ≤ θ
(1)
k + θ

(2)
k , k = 1, . . . , p; (2.6)

θ
(1)
k ≥ 0, θ

(2)
k ≥ 0, τk ≥ 0, k = 1, . . . , p;

p∑
k=1

tk ≤M, tk ≥ 0.

Here the parameters for optimization includes θ(1) = (θ
(1)
1 , . . . , θ

(1)
p )′, θ(2) = (θ

(2)
1 , . . . , θ

(2)
p )′,

τ = (τ1, . . . , τp)
′, t = (t1, . . . , tp)

′, and σ2. The parameters tk’s are nuisance parameters to

encourage the strong association of the significant variables in the regression models for y|z

and the logistic regression model for z. Specifically, if a tk = 0, the values of θ
(1)
k , θ

(2)
k and

τk will be forced to be zeros simultaneously. It implies that the kth predictor variable is not

significant in the QQ system. Thus, this variable is not selected by the QQ models, which

encourages the sparsity of the QQ models. The constraints τk ≤ θ
(1)
k + θ

(2)
k is to encourage

a variable to be selected in at least one of linear regression models, if this variable appears
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to be significant in the logistic regression model. This constraint reflects the engineering

perceptions that the predictors for modeling qualitative response are usually informative for

quality control, and they are also expected to be significant for modeling the quantitative

response in the manufacturing system.

Note that there is a tuning parameter M in (2.6), which needs to be specified based on

the data. An appropriate selection of M can balance the trade-off between the model fitting

and model parsimoniousness. If the value of M is set to be zero in (2.6), all values of the

estimated parameters will be equal to zeros, i.e., none of predictor variables will be selected

in the model. If the value of M is set to be sufficiently large, the proposed method will

select all predictors in the model. The estimation of parameters will be the same as the

MLE approach. The common methods to select tuning parameters include cross-validation

and information criterion approaches, such as Akaike information criterion (AIC), Bayesian

information criterion (BIC), and Cp criteria (Burnham and Anderson, 2002). In this work,

we use the BIC to find an optimal value of the tuning parameter M . The BIC score for the

proposed models can be written as

BIC(M) = −2l(τ ,θ(1),θ(2)) + q log(n), (2.7)

where q is the number of nonzero estimates of parameters in the models. Specifically, we

can generate a grid for M , such as M ∈ C = {m1, . . . ,mt}. For each grid point mj in C, we

evaluate the corresponding BIC scores, and find the optimal choice of M with the minimal

BIC score among all grid points in C.

3 Computational Algorithm

Solving the proposed optimization problem in (2.6) is non-trivial because of the non-convexity

of the objective function. It is also likely that there are a large number of parameters to

optimize. To address this challenge, we propose a quadratic approximation for the original

objective function, thus to convert the optimization in (2.6) to a constrained quadratic opti-

mization problem. The key idea is based on a sequence of local quadratic approximation. It

is well known that the constrained sequential quadratic optimization can guarantee a global
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optimum with fast computation (Boyd and Vandenberghe, 2004).

Denote X = (x1, . . . ,xn)T to be the design matrix, z = (z1, . . . , zn)T to be the binary

response vector. Without loss of the generality, we assume that the first n1 observations with

binary response z = 1, and the remaining n2 observations with response z = 0, where n =

n1 + n2. Then, we can define y(1) = (y1, . . . , yn1)
T and y(2) = (yn1+1, . . . , yn)T . Similarly, we

can correspondingly defineX(1) andX(2), respectively. Given an estimate of η, we first apply

the quadratic approximation for the log-likelihood function l(η,β(1),β(2)) in (2.6). The detail

of the quadratic approximation for l(η,β(1),β(2)) is described in Part A of Supplemental

Materials. Specifically, we approximate the original objective function in (2.6) by

(z̃ −Xη)TW (z̃ −Xη) + n log(σ2)

+
1

σ2

[
(y(1) −X(1)β

(1))T (y(1) −X(1)β
(1)) + (y(2) −X(2)β

(2))T (y(2) −X(2)β
(2))
]

(3.1)

Here z̃ = Xηc + W−1(z − p) with W = diag(p(x1,ηc)(1 − p(x1,ηc)), . . . , p(xn,ηc)(1 −

p(xn,ηc))), and p = (p(x1,ηc), . . . , p(xn,ηc))
′ provided by an current estimate ηc. In this

case, the above objective function of the approximate quadratic problem is clearly a convex

function with respect to unknown parameters θ(1) = (θ
(1)
1 , . . . , θ

(1)
p )′, θ(2) = (θ

(2)
1 , . . . , θ

(2)
p )′,

τ = (τ1, . . . , τp)
′, and t = (t1, . . . , tp)

′. Since the parameter σ2 is not involved in any

constraint, by taking the derivative of the objective function with respect to σ2, we can

obtain the estimate of σ2 explicitly as follows,

σ̂2 =
1

n

[
(y(1) −X(1)β

(1))T (y(1) −X(1)β
(1)) + (y(2) −X(2)β

(2))T (y(2) −X(2)β
(2))
]
. (3.2)

Note that the objective function in (3.1) is provided by an initial estimate ηc = η0. We

can choose a proper value of η0 and update the estimations in an iterative procedure. The

iterative algorithm is summarized as follows:

Algorithm 1.

Step 1: Set an initial estimate σ2 = σ2
0 > 0, also an initial estimate of ηc = η0.

Step 2: Update the weightW = diag(p(x1,ηc)(1−p(x1,ηc)), . . . , p(xn,ηc)(1−p(xn,ηc))),

and the adjusted response z̃ = Xηc +W−1(z − p), where p = (p(x1,ηc), . . . , p(xn,ηc))
′.

Step 3: Obtain the estimate η̂, β̂
(1)
, β̂

(2)
by solving the optimization in (3.1).
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Step 4: Update the estimate σ̂2 by plugging β̂
(1)
, β̂

(2)
obtained in Step 2 into (3.2).

Step 5: Check if convergence, i.e., the maximum absolute differences of each element of

η̂, β̂
(1)
, β̂

(2)
and the estimates in the last iteration are smaller than tolerance level δ = 0.001.

Otherwise, set σ2 = σ̂2, ηc = η̂, and go back to Step 2.

For the initial estimation of σ2 and ηc, we simply choose σ2
0 as the residual variance

by fitting a linear regression model for the quantitative response, and η0 as the marginal

logistic regression model parameters. For the initial estimation in the nonnegative approach

for re-parameterization, we use the least squares estimates for β̃
(1)
k , β̃

(2)
k , and η̃k. When the

least squares estimates is not available, we would choose a ridge regression estimator (Hoerl

and Kennard, 1970) for the linear regression models and the logistic regression model.

4 Simulation

To evaluate the performance of the proposed method, we consider several simulation settings

for generating the data with the underlying models in (2.1) and (2.2). Let I1 be the index

set of significant predictor variables in β(1) and I2 be the index set of significant variables in

β(2). Denote β̄1 = {β(1)
k : k ∈ I1} and β̄2 = {β(2)

k : k ∈ I2}. Similarly, we denote by Il be the

index set of significant variables in η. Denote η̄ = {ηk : k ∈ Il}. Specifically, we consider

four examples as follows.

Example 1. I1 and I2 are the same, and the values of β̄1 and β̄2 are similar.

Example 2. I1 and I2 are different (i.e., the significant variables are different), but the

values of β̄1 and β̄2 are similar.

Example 3. I1 and I2 are the same, but the values of β̄1 and β̄2 are different.

Example 4. I1 and I2 are different, and the values of β̄1 and β̄2 are also different.

In each example, the index sets Il, I1 and I2 are generated randomly but following the

proportion of sparsity s. Here the value of s represents the proportion of nonzero entries

in a parameter vector. The entry values of parameter vector η̄ are generated from uniform

distribution U(−2, 2). In Examples 1 and 2, we first generate the parameter vector β̄1

with each entry value from normal distribution N(2, 1). Then the entry values of β̄2 are
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obtained by adding a small perturbation from N(0, 0.01) onto the entry values of generated

β̄1. In Examples 3 and 4, the entry values of parameter vectors β̄1 and β̄2 are generated

independently from N(2, 1), respectively.

For each example, we generate a training set and a test set based on the models in (2.1)

and (2.2). The n data points x1, . . . ,xn in the training set are independent and identically

distributed (i.i.d.) sample generated from N(0,Σ), where Σ = (σij)p×p with (i, j)th entry

σij = ρ|i−j| and ρ being a correlation parameter. The n data points of the test data set are

i.i.d. sample generated from U(−2, 2). The sample sizes for the training data set and the

test data set are n = 100. The σ2 in the model (2.2) is chosen to be 1.

To systematically investigate the performance of the proposed method, we consider dif-

ferent scenarios of generating the simulation data by varying the predictor dimensionality

p, correlation parameter ρ and proportion of sparsity s. We choose two levels of p with the

values p = 20 and p = 50, two levels of ρ with the values ρ = 0 and ρ = 0.5, and two levels

of s with the values s = 20% and s = 50%. For every setting of each example, we conduct

50 simulation replicates.

To evaluate the accuracy of the estimated QQ models, we compare the proposed method

with two benchmark models: separating modeling using BIC (SMBIC) and modeling with

additional predictors using BIC (MABIC). The SMBIC approach ignores the association

between the two types of responses. It fits a linear regression model for the quantitative

response y and a logistic regression model for the qualitative response z separately, of which

both use BIC for variable selection. The MABIC approach considers adding one of QQ

responses as predictor in modeling the other response. Specifically, the MABIC is to fit a

linear regression model for the quantitative response y by adding the qualitative response z

as an additional predictor, and fit a logistic regression model for the qualitative response z

by adding the quantitative response y as an additional predictor. The BIC is also used for

the variable selection. For all three methods in comparison, the models estimated from the

training set are used to compute the prediction errors based on the test set. Specifically,

the prediction errors for the quantitative response y is measured by the root mean squared

prediction error as RMSPE = 1
n

∑2
k=1

∑nk
i=1

√
(y

(k)
i − x

(k)′

i β̂
(k)

)2, and the prediction error
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for the qualitative response z with binary output is measured by the misclassification error

as ME = 1
n

∑n
i=1 I(zi 6= ẑi), where ẑi ∈ {0, 1} is the prediction of binary response zi based

on the logistic regression in (2.1), and I(·) is an indicator function. Furthermore, we also

calculate the accuracy of variable selection for the estimated models. Here we use the total

number of falsely selected variables, denoted by γ , as the performance measure. The γ

is defined by γ = FP + FN , where FP represents the number of false positives and FN

represents the number of false negatives in variable selection.

Table 1 reports the averages of RMSPEs (or MEs) and standard errors in parenthesis

based on 50 simulation replicates. By using the efficient computational algorithm in Section

3, the average of computing time for the proposed method is 3.95 seconds for each sim-

ulation replicate (based on a workstation with CPU Xeon Processor E5-2687W, 3.10GHz,

64GB RAM). We denote the estimated linear regression models by QQlm in (2.2) and the

estimated logistic regression model by QQlogit in (2.1) from the proposed QQ models. Simi-

larly, we denote BIClm and BIClogit as the corresponding estimated models from the SMBIC

approach. We denote Addlm and Addlogit as the corresponding estimated models from the

MABIC approach. For the results of Example 1, the performance of the proposed QQ mod-

els is comparable to the SMBIC approach and the MABIC approach. Note that Example 1

considers β(1) and β(2) being similar. It implies that the quantitative response y does not

depend much on the qualitative response z. Since there is no hidden association between

the QQ responses, separate modeling QQ responses such as the SMBIC and the MABIC ap-

proaches would give accurate estimation of parameters. In contrast, Examples 2-4 consider

the situations of β(1) and β(2) being different with respect to the significant variables and

their values. It means that the two conditional models y|z = 1,x and y|z = 0,x are different,

reflecting the dependency between the QQ responses. In these situations, the proposed QQ

models generally outperform the SMBIC approach and the MABIC approach. In particular,

the RMSPEs from the QQlm are much smaller than those from the BIClm and the Addlm.

These findings can be explained by the fact that the proposed QQ models consider the de-

pendency between the quantitative response y and qualitative response z through the joint

probability p(y|z,x)p(z|x). While the SMBIC approach considers the probability indepen-
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Table 1: Averages and Standard Errors of RMSPEs (or MEs) from 50 Simulation Runs.

ρ = 0 ρ = 0.5

Example p Method s = 20% s = 50% s = 20% s = 50%

QQlm 0.49 (0.01) 0.50 (0.01) 0.51 (0.01) 0.50 (0.01)

BIClm 0.57 (0.01) 0.59 (0.01) 0.57 (0.01) 0.59 (0.01)

1 20 Addlm 0.57 (0.01) 0.60 (0.01) 0.57 (0.01) 0.60 (0.01)

QQlogit 0.10 (0.00) 0.12 (0.01) 0.21 (0.01) 0.12 (0.01)

BIClogit 0.15 (0.01) 0.13 (0.01) 0.14 (0.01) 0.12 (0.01)

Addlogit 0.15 (0.01) 0.12 (0.01) 0.15 (0.01) 0.12 (0.01)

QQlm 0.72 (0.04) 5.36 (0.64) 0.66 (0.02) 1.69 (0.29)

BIClm 0.66 (0.01) 0.80 (0.01) 0.65 (0.01) 0.87 (0.02)

1 50 Addlm 0.66 (0.01) 0.80 (0.01) 0.65 (0.01) 0.88 (0.02)

QQlogit 0.20 (0.01) 0.25 (0.01) 0.18 (0.01) 0.21 (0.01)

BIClogit 0.17 (0.01) 0.26 (0.01) 0.18 (0.01) 0.24 (0.01)

Addlogit 0.18 (0.01) 0.24 (0.01) 0.17 (0.01) 0.20 (0.01)

QQlm 0.70 (0.02) 0.71 (0.01) 0.57 (0.01) 0.69 (0.02)

BIClm 3.77 (0.04) 5.37 (0.06) 2.57 (0.03) 3.62 (0.04)

2 20 Addlm 3.75 (0.04) 5.31 (0.06) 2.56 (0.03) 3.60 (0.04)

QQlogit 0.19 (0.01) 0.16 (0.01) 0.10 (0.00) 0.14 (0.01)

BIClogit 0.15 (0.01) 0.12 (0.00) 0.13 (0.01) 0.12 (0.01)

Addlogit 0.15 (0.01) 0.13 (0.01) 0.13 (0.01) 0.12 (0.01)

QQlm 3.02 (0.25) 10.04 (0.22) 3.21 (0.17) 8.20 (0.66)

BIClm 9.05 (0.13) 8.37 (0.12) 8.43 (0.13) 8.48 (0.16)

2 50 Addlm 8.66 (0.13) 8.44 (0.15) 8.46 (0.12) 8.43 (0.15)

QQlogit 0.21 (0.01) 0.26 (0.01) 0.25 (0.01) 0.23 (0.01)

BIClogit 0.17 (0.01) 0.25 (0.01) 0.18 (0.01) 0.23 (0.01)

Addlogit 0.18 (0.01) 0.25 (0.01) 0.20 (0.01) 0.23 (0.01)

QQlm 0.59 (0.01) 0.69 (0.01) 0.57 (0.01) 0.76 (0.04)

BIClm 2.53 (0.03) 3.35 (0.04) 1.96 (0.02) 3.05 (0.05)

3 20 Addlm 2.54 (0.03) 3.35 (0.04) 1.96 (0.02) 3.00 (0.04)

QQlogit 0.11 (0.01) 0.13 (0.01) 0.09 (0.00) 0.14 (0.01)

BIClogit 0.15 (0.01) 0.13 (0.01) 0.14 (0.01) 0.11 (0.01)

Addlogit 0.15 (0.01) 0.12 (0.01) 0.14 (0.01) 0.11 (0.01)

QQlm 1.53 (0.10) 9.99 (0.33) 2.21 (0.10) 7.78 (0.39)

BIClm 3.52 (0.05) 8.11 (0.15) 4.27 (0.07) 7.93 (0.17)

3 50 Addlm 3.56 (0.06) 8.05 (0.14) 4.29 (0.07) 7.88 (0.15)

QQlogit 0.16 (0.01) 0.24 (0.01) 0.16 (0.01) 0.19 (0.01)

BIClogit 0.19 (0.01) 0.27 (0.01) 0.19 (0.01) 0.24 (0.01)

Addlogit 0.17 (0.01) 0.26 (0.01) 0.18 (0.01) 0.23 (0.01)

QQlm 0.62 (0.01) 1.44 (0.16) 0.59 (0.01) 0.71 (0.03)

BIClm 4.28 (0.06) 5.19 (0.06) 2.78 (0.04) 3.49 (0.04)

4 20 Addlm 4.26 (0.06) 5.18 (0.06) 2.78 (0.04) 3.49 (0.04)

QQlogit 0.11 (0.01) 0.18 (0.01) 0.11 (0.01) 0.14 (0.01)

BIClogit 0.14 (0.01) 0.12 (0.01) 0.11 (0.01) 0.12 (0.01)

Addlogit 0.14 (0.01) 0.13 (0.01) 0.12 (0.01) 0.11 (0.00)

QQlm 2.90 (0.17) 10.64 (0.22) 3.09 (0.18) 8.86 (0.42)

BIClm 7.79 (0.11) 12.11 (0.18) 7.82 (0.10) 11.16 (0.15)

4 50 Addlm 7.64 (0.12) 11.77 (0.17) 7.73 (0.10) 10.89 (0.17)

QQlogit 0.27 (0.01) 0.25 (0.01) 0.25 (0.01) 0.20 (0.01)

BIClogit 0.17 (0.01) 0.27 (0.01) 0.17 (0.01) 0.24 (0.01)

Addlogit 0.17 (0.01) 0.26 (0.01) 0.17 (0.01) 0.23 (0.01)
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dently as p(y|x)p(z|x) and the MABIC approach only considers a particular dependency of y

and z by treating of one of them as predictor in the modeling. Therefore, the model structure

for QQlm based on p(y|z,x) is more favorable to obtain an accurate model in prediction. We

also note that the MEs from the QQlogit are comparable to that from the BIClogit and the

Addlogit. Because the QQlogit is obtained based on marginal distribution p(z) for modeling

the binary response. It is expected that QQlogit have comparable prediction performance to

the BIClogit and the Addlogit, both of which are also based on marginal distribution p(z|x)

for modeling the binary response.

Under different design matrices and dimensionality of parameters, we also observe that

the proposed QQ models give better prediction performance than the SMBIC approach and

the MABIC approach for Examples 2-4. It is because that the proposed QQ models take

the advantage of the association between the QQ responses regardless of the structure of

the design matrix X. Under two levels of sparsity s with the same correlation parameter ρ

and dimensionality p, we can see that the QQlm has smaller RMSPEs than the BIClm and

the Addlm in both sparsity levels for p = 20. When the dimensionality becomes larger in

p = 50, the QQlm has much better performance than the BIClm and the Addlm at sparse

level s = 20%, while the QQlm has slightly better performance than the BIClm and the

Addlm at sparse level s = 50%. One possible explanation is that when p = 50, the number

of parameters reaches 150, which is more than the sample size n = 100. Such a situation

would be in favor of QQ models with more sparse levels to gain better prediction accuracy.

Furthermore, Table 2 examines the performance of variable selection in terms of the

number of false selection for the four examples. Here the number of false selection for the

linear models, i.e., QQlm, BIClm and Addlm, is calculated by the average of the number

of false selections with respect to the two conditional linear regression models on y|z = 1

and y|z = 0. The results in Table 2 show that the proposed QQ models generally have

better variable selection accuracy than the SMBIC approach and the MABIC approach. In

Examples 1 and 3, note that the linear models of y|z = 1,x and y|z = 0,x have the same

significant variables. In these situations, it appears that the QQlogit has better selection

accuracy than the BIClogit and the Addlogit, while the variable selection accuracy of QQlm is
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Table 2: Averages and Standard Errors of Number of False Selections from 50 Simulation Runs.

ρ = 0 ρ = 0.5

Example p Method s = 20% s = 50% s = 20% s = 50%

QQlm 1.74 (0.15) 2.44 (0.13) 5.31 (0.24) 1.92 (0.16)

BIClm 0.84 (0.16) 0.32 (0.07) 0.60 (0.14) 0.24 (0.07)

1 20 Addlm 0.82 (0.16) 0.38 (0.07) 0.60 (0.14) 0.28 (0.07)

QQlogit 0.50 (0.10) 1.52 (0.14) 1.84 (0.16) 3.74 (0.22)

BIClogit 5.86 (0.52) 4.80 (0.30) 5.56 (0.49) 7.04 (0.29)

Addlogit 6.50 (0.55) 5.58 (0.43) 6.40 (0.56) 8.22 (0.37)

QQlm 2.88 (0.48) 20.79 (0.57) 11.34 (0.64) 7.28 (0.44)

BIClm 3.08 (0.40) 1.72 (0.25) 2.86 (0.34) 3.26 (0.35)

1 50 Addlm 3.04 (0.39) 1.72 (0.25) 2.90 (0.35) 3.44 (0.36)

QQlogit 8.04 (0.17) 16.72 (0.35) 5.74 (0.26) 20.50 (0.36)

BIClogit 9.12 (0.45) 23.12 (0.45) 11.04 (0.44) 26.80 (0.40)

Addlogit 9.46 (0.52) 25.48 (0.60) 12.56 (0.60) 27.98 (0.55)

QQlm 1.95 (0.15) 1.76 (0.19) 0.82 (0.09) 1.60 (0.10)

BIClm 4.40 (0.21) 6.38 (0.27) 4.56 (0.23) 6.80 (0.33)

2 20 Addlm 4.38 (0.20) 6.42 (0.28) 4.54 (0.23) 6.90 (0.31)

QQlogit 3.54 (0.25) 5.18 (0.29) 3.60 (0.26) 7.02 (0.31)

BIClogit 5.58 (0.55) 4.96 (0.33) 6.12 (0.51) 6.78 (0.32)

Addlogit 6.44 (0.60) 5.70 (0.36) 6.66 (0.54) 7.62 (0.40)

QQlm 1.12 (0.29) 24.24 (0.47) 2.28 (0.21) 6.46 (0.52)

BIClm 14.02 (0.73) 16.80 (0.73) 14.14 (0.60) 17.96 (0.65)

2 50 Addlm 14.10 (0.75) 17.38 (0.75) 14.36 (0.61) 18.16 (0.68)

QQlogit 10.56 (0.32) 20.96 (0.43) 10.50 (0.34) 22.48 (0.45)

BIClogit 9.16 (0.41) 22.40 (0.47) 11.08 (0.41) 26.66 (0.40)

Addlogit 9.28 (0.40) 23.94 (0.61) 11.76 (0.42) 27.34 (0.53)

QQlm 0.16 (0.09) 0.81 (0.05) 0.98 (0.17) 4.11 (0.09)

BIClm 0.72 (0.11) 1.00 (0.17) 1.14 (0.21) 3.02 (0.18)

3 20 Addlm 0.84 (0.14) 1.00 (0.17) 1.10 (0.21) 2.84 (0.20)

QQlogit 1.78 (0.15) 7.14 (0.24) 1.70 (0.12) 7.22 (0.17)

BIClogit 5.54 (0.52) 4.82 (0.34) 5.86 (0.56) 6.24 (0.28)

Addlogit 6.54 (0.59) 5.98 (0.45) 6.28 (0.55) 6.74 (0.34)

QQlm 2.41 (0.47) 23.82 (0.47) 2.78 (0.32) 17.06 (0.40)

BIClm 3.28 (0.38) 8.88 (0.64) 5.08 (0.58) 11.08 (0.51)

3 50 Addlm 3.36 (0.42) 8.92 (0.67) 5.44 (0.60) 11.20 (0.52)

QQlogit 6.82 (0.30) 17.58 (0.36) 7.20 (0.22) 16.00 (0.34)

BIClogit 9.88 (0.44) 23.54 (0.39) 11.24 (0.48) 25.92 (0.38)

Addlogit 10.34 (0.53) 24.86 (0.55) 11.88 (0.58) 28.04 (0.61)

QQlm 1.96 (0.16) 0.35 (0.09) 0.09 (0.06) 2.23 (0.16)

BIClm 4.54 (0.25) 5.70 (0.32) 4.56 (0.23) 5.40 (0.27)

4 20 Addlm 4.54 (0.25) 5.96 (0.33) 4.54 (0.23) 5.40 (0.27)

QQlogit 2.38 (0.26) 6.36 (0.33) 3.50 (0.17) 5.00 (0.34)

BIClogit 5.38 (0.55) 4.98 (0.32) 5.30 (0.45) 7.32 (0.29)

Addlogit 6.12 (0.59) 6.20 (0.41) 5.92 (0.52) 8.24 (0.35)

QQlm 2.69 (0.40) 19.48 (0.44) 4.97 (0.21) 11.55 (0.49)

BIClm 14.20 (0.70) 21.04 (0.72) 15.42 (0.70) 21.66 (0.62)

4 50 Addlm 14.60 (0.63) 21.98 (0.65) 15.34 (0.64) 21.88 (0.61)

QQlogit 10.58 (0.33) 19.42 (0.47) 10.96 (0.41) 20.34 (0.41)

BIClogit 8.70 (0.43) 23.48 (0.41) 10.34 (0.48) 25.98 (0.43)

Addlogit 10.02 (0.48) 24.84 (0.54) 10.98 (0.51) 27.14 (0.53)
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comparable to the BIClm and the Addlm. An intuitive explanation is that when the linear

models of y|z = 1,x and y|z = 0,x have the same significant variables, the conditional model

y|z,x in (2.2) only reflects the role of z through the values of estimated coefficients, not on

the role of what the significant variables are. It makes the variable selection accuracy of QQlm

comparable to those of BIClm and Addlm. In Examples 2 and 4, when the linear models of

y|z = 1,x and y|z = 0,x become different in significant variables, one can clearly see that

the proposed method gains the superiority of variable selection accuracy for both QQlm and

QQlogit. Moreover, as the dimensionality p increases in these examples, the advantages of the

proposed method on variable selection become more significant, especially when s = 20%.

With the sample size n = 100 fixed in this study, the increase of p would make the QQ

models having more advantage when the underlying model is sparse.

To check whether the fitted QQ models are over-sparse or under-sparse, we also report

the number of false positives and the number of false negatives in Part B of Supplemental

Materials. The results show that the number of false positive for the QQ models are small

in general, indicating that the fitted QQ models would not be under-sparse. In addition, the

number of false positive from the QQ models are much smaller than those from the SMBIC

and the MABIC approaches in most cases. For the number of false negatives, we can see

that under the dimensionality s = 20% and p = 20, the number of false positives for QQ

models are generally smaller than those from the SMBIC and the MABIC approaches. But

when the sparsity s = 50% and p = 50, the number of false positives for QQ models become

relatively large, indicating that the fitted models can be over-sparse to some extent. One

possible explanation is that p = 50 means that the number of parameters in QQ model is

150, larger than the sample size n = 100. In this situation, the QQ models tends to pursue

sparse models to get accuracy on the predication.

In this work, the proposed QQ models assume a linear model for the quantitative re-

sponse y with normal distributed errors. To evaluate the robustness of the proposed QQ

models, we first conduct a set of simulations to check the normality assumption of the linear

model residuals ε = y− zx′β(1) + (1− z)x′β(2). Specifically, we generate the simulation data

following the aforementioned procedure, except changing the distribution of the linear model
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residuals from a normal distribution to a Chi-squares distribution (skewed) and a t distribu-

tion (heavy tail) with degrees of freedom 5, respectively. We also scale the Chi-square and

t distributions to have the same variance σ2 =1 as the normal distribution used in linear

model residuals. The prediction and variable selection performance of the QQ models and

the SMBIC approach are reported in Part B of Supplemental Materials. We found that the

QQ models generally have more accurate prediction and variable selection than the SMBIC

approach in Examples 2-4, when the underlying distributions deviate from a normal distri-

bution. The QQ models are robust to the normality assumption of residuals to some extent,

since the prediction and variable selection performance of the QQ models for Chi-squares

distributed residuals and t distributed residuals are comparable to those of the QQ models

for normally distributed residuals. Second, we evaluate the robustness of the linear model

assumption for the quantitative response y. Specifically, we generate the simulation data

following the aforementioned procedure, but taking cubic of the regression mean in (2.2)

as z(x′β(1))3 + (1 − z)(x′β(2))3. Thus the underlying model for the quantitative response

becomes nonlinear. We fit the data using the QQ models and SMBIC approach with a linear

model for the quantitative response. From the results in Part B of Supplemental Materials,

both the QQlm and the BIClm yield large prediction errors due to the improper assumptions

of the model structure. But the QQlm gives relatively smaller RMSPEs than the SMBIC

approach, which may be explained by the flexibility of the QQ models: the quantitative

response is conditioned on the different values of z. For the variable selection performance,

the QQlm does not clearly outperform the BIClm in various cases. It appears that when the

linear model structure assumption is not valid, the proposed QQ models may not perform

well. Some discussions are provided in Section 6 on how to address this issue.

5 Case Study in the Lapping Process

To further illustrate the merits of the QQ models, we analyze the data from a real case

study in the lapping process. Recall the lapping process introduced in Section 1, there are

10 predictors and two quality responses, which are summarized in Part C of Supplemental

Materials. In this process, there are four process variables: pressure, rotation speed, lapping
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Figure 2: Comparison of Prediction Accuracy of the QQ Models and SMBIC for the Lapping

Process: (a) Root mean squared errors (RMSPE); (b) misclassification error (ME); (c) false

positive classification error (FP); (d) false negative classification errors (FN).

time for low pressure, and lapping time for high pressure. In addition, there are six initial

quality covariates before the lapping process. This collected data set contains 254 wafer

observations, where 203 wafers have the STIR indicator as 0 (good), and the remaining 51

wafers have the STIR indicator as 1 (bad). To evaluate the performance of the proposed QQ

models, we randomly partition the data set into a training data set (50%) and a test data

set (50%) with a stratified sampling strategy. Such random partitions repeat for 50 times.

For each partition, the proposed QQ models and the SMBIC approach are applied to model

the quantitative response TTV and the qualitative response STIR indicator based on the

training data set. The prediction errors of the test data set and the number of selections for

each predictor variable of the training data set are computed for both methods.
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Figure 2 shows the boxplots of RMSPEs (MEs) for the QQ models and the SMBIC

approach under the 50 replicates of data partitions. We did not compare the performance

of the MABIC approach here because neither of QQ responses will be available and they

need to be predicted in real practice. From Figure 2(a), it is clear that the proposed QQ

models have much smaller RMSPEs than the SMBIC approach. Figure 2(b) also shows

that the misclassification errors of the proposed method are also smaller than that from the

SMBIC approach. As shown in Figure 2(c)-(d), the smaller misclassification error of the

QQ models is mainly due to the smaller false positive classification error; while the false

negative classification errors are comparable for the two methods. The results indicate that

the proposed joint modeling of QQ responses enhanced the prediction performance in this

case.

Table 3 reports the average numbers of selected variables and their standard errors (in

the parenthesis) for both methods. Here the number of selected variables for the linear

models, i.e., QQlm and BIClm, is calculated by the average of the number of selections with

respect to the two conditional linear regression models on y|z = 1,x and y|z = 0,x. From

the results in Table 3, we can see that the quality covariates x5 − x10 are often selected by

QQlm and QQlogit. While the BIClm and BIClogit consistently ignore the quality covariates

in the models. In fact, the quality covariates are expected to be important in the model if

the STIR indicator is 1. From the engineering perception, the lapping process is likely to be

nonconforming if the STIR indicator is 1. In this case, the quality covariates representing

the initial quality of wafers become important factors for after-lapping wafer quality. The

proposed QQ models successfully capture such engineering perception. In contrast, the

SMBIC approach considers modeling the two responses TTV and STIR indictor separately,

which cannot unveil the significance of quality covariates in this case study. In summary,

the proposed QQ models successfully discover this hidden information, which can be further

used for quality control and process improvement.

We also evaluate the model assumption for this real-data example. The Q-Q normal plots

for the residuals in the model y|z = 1,x and the residuals in the model y|z = 0,x are provided

in Part C of Supplemental Materials. From the Q-Q plots, we can see that the distribution
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Table 3: Averages and Standard Errors of Selection Percentage from 50 Replicates of Data

Partitions for the Lapping Process.

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

QQlm 0.74 0.62 0.88 0.88 0.65 0.60 0.68 0.59 0.66 0.65

(0.04) (0.04) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04)

BIClm 0.52 0.10 1.00 1.00 0.00 0.02 0.02 0.00 0.00 0.08

(0.07) (0.04) (0.00) (0.00) (0.00) (0.02) (0.02) (0.00) (0.00) (0.04)

QQlogit 0.44 0.52 0.64 0.70 0.32 0.18 0.36 0.32 0.22 0.44

(0.07) (0.07) (0.07) (0.06) (0.07) (0.05) (0.07) (0.07) (0.06) (0.07)

BIClogit 0.14 0.04 0.68 0.86 0.00 0.00 0.00 0.04 0.00 0.00

(0.05) (0.03) (0.07) (0.05) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00)

of the residuals would be close to normal distribution after a linear transformation. It

appears that the normality assumption of the residuals may not strictly hold. Note that

the prediction performance of the regression models in QQ models is still better than the

benchmark models. It appears being reasonable to use the proposed models for prediction.

This is also consistent with the conclusion drawn from the simulation, that the proposed

QQ models are robust to the normally distributed residual assumption. We also examine

the residuals over fitted responses in the model y|z = 1,x and the model y|z = 0,x, see Part

C of Supplemental Materials. It is clear that for both models the residuals have constant

variance, and forms several clusters along fitted response. This is mainly because the lapping

data are collected from the design of experiments settings, where the fitted responses are

clustered. In addition, the random patterns appeared in the residual plots indicate that the

linear model assumption seems to be reasonable for modeling y.

For the two conditional models y|z = 1,x and y|z = 0,x, we assume that the two

models have the same error variance, i.e., var(y|z = 1,x) = var(y|z = 0,x). To check

this assumption, we check if the standard errors in the model y|z = 1,x and the model

y|z = 0,x are the same by using the F-test. Based on the fitted QQ models, the standard

error for the model y|z = 1,x is 0.3135, and the standard error of the error terms for the

model y|z = 0,x is 0.2219. The p-value of the F-test is 0.0002, indicating that the standard
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errors are different in this case study. Recall the model in (2.2), the proposed method can be

easily extended to allow the two conditional models having two different variances without

changing the nature of the problem.

To check the logistic model assumption in modeling z|x, we performed model diagnostics

by using χ2 test for deviance. For the logistic regression obtained from the QQ models, the

null deviance is 433.91, and the model deviance is 398.13. The p-value of the χ2 test is

1.7× 10−8. Thus, it shows that the logistic regression model obtained from the QQ models

have a reasonable goodness of fit for the real data.

6 Discussion

A QQ system is widely encountered in manufacturing processes, such as a lapping process,

a solar cell lamination process, and nanostructure synthesis. With both QQ responses of

quality closely associated, the two types of quality responses often share the same set of

potential root causes. Therefore, a joint modeling framework is needed for integrating both

types of quality responses. In this paper, we propose a joint likelihood modeling framework

called QQ models. The proposed models consider the joint probability of the quantitative

and qualitative responses, while the constrained likelihood estimation approach is used for

parameter estimation and variable selection. A fast algorithm of parameter estimation is also

developed by quadratic approximation to facilitate fast computation. We use both simulation

studies and a real case study from the lapping process to demonstrate the effectiveness

of the QQ models. Especially in the case study, the proposed QQ models yield better

prediction and more meaningful variable selection, which reflect the inherent features of the

real manufacturing process.

Note that for complex QQ systems, the quality-process relationship can be highly non-

linear. The proposed method can be extended to the nonlinear models. One possibility is to

incorporate projection pursuit (Friedman and Stuetzle, 1981) into the proposed QQ models

to allow more flexibility on the predictive functions. Specifically, we can extend the models
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in (2.1) and (2.2) as

z|x =

 1, w.p. p(x)

0, w.p. 1− p(x)
with p(x) =

exp(v(x′η))

1 + exp(v(x′η))
,

y|z,x ∼ N(zh1(x
′
β(1)) + (1− z)h2(x

′
β(2)), σ2),

where h1, h2 and v are nonparametric functions. The nonparametric forms of hj and v allow

flexible functional structures to be estimated. For the parameter estimation, an efficient

algorithm can be developed by iterating the estimation between functions h1, h2, v and

parameters η, β(1), β(2). Another possibility of extending the proposed QQ models is to

adopt the nonparametric methods (Qiu, 2014) to relax the normality assumption, which can

be an interesting topic for our future research.

Although we focus on one quantitative response and one qualitative response in this

work, the proposed method can be generalized to the case of multiple responses. Suppose the

multiple quantitative responses are y1, . . . , ym and multiple binary responses are z1, . . . , zt.

For example, a multi-level qualitative response can be transformed into a set of dummy

binary responses. For m > 1 and t = 1, we can generalize the QQ models by multi-response

regression (Breiman and Friedman, 1997) as

(y1, . . . , ym)|z,x ∼ N(zx′B(1)) + (1− z)x′B(2),Σ),

where B(1),B(2) are coefficient matrices, and Σ is a covariance matrix. For m > 1 and

t > 1 with multiple binary responses, considering all 2t conditional models (y1, . . . , ym|z1 =

1, . . . , zt = 1), . . . , (y1, . . . , ym|z1 = 0, . . . , zt = 0) may only work for a small t. Alternatively,

we can develop a two-stage approach by first using independence screening (Fan and Lv,

2008) to select important qualitative responses. That is to conduct t independent conditional

models (y1, . . . , ym|z1), . . . , (y1, . . . , ym|zt) and select u < t qualitative responses zj’s with

best fitting. Then the full conditional models will be applied for the selected u qualitative

responses. For the joint distribution of u qualitative responses, we can consider multi-logit

models (McCullagh, 1980) and Ising models (Ravikumar et al., 2010) as possible solutions.

The proposed method can be extended to accommodate interaction effects of the predic-

tors. The hierarchical and heredity principles (Wu and Hamada, 2009) can also be incorpo-
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rated under the nonnegative garrote approach for variable selection. Other types of variable

selection and group variable selection techniques, such as lasso (Tibshirani, 1996) and group

non-negative garrotes (Yuan and Lin, 2006), will be investigated for the proposed method.

A Bayesian modeling framework will also be developed to integrate information for both

types of responses.

We would like to point out that there can be other possibilities to model the joint distribu-

tion of QQ responses. In the proposed QQ models, we have considered the joint distribution

f(y, z|x) = f(y|z,x)f(z|x) for model construction. Alternatively, one may consider the

model construction based on f(y, z|x) = f(z|y,x)f(y|x). However, it is not clear how to

appropriately quantify f(z|y,x) in a general formulation, which can be an interesting topic

for future research. When the association of QQ responses becomes more complicated than

the conditional distribution, it may not be appropriate to use the QQ models. Other tech-

niques such as nonparametric methods can be potentially useful to deal with the related

research problems.
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